首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
For a graph H , let for every edge . For and , let be a set of k‐edge‐connected K3‐free graphs of order at most r and without spanning closed trails. We show that for given and ε, if H is a k‐connected claw‐free graph of order n with and , and if n is sufficiently large, then either H is Hamiltonian or the Ryjác?ek's closure where G is an essentially k‐edge‐connected K3‐free graph that can be contracted to a graph in . As applications, we prove:
  • (i) For , if and if and n is sufficiently large, then H is Hamiltonian.
  • (ii) For , if and n is sufficiently large, then H is Hamiltonian.
These bounds are sharp. Furthermore, since the graphs in are fixed for given p and can be determined in a constant time, any improvement to (i) or (ii) by increasing the value of p and so enlarging the number of exceptions can be obtained computationally.  相似文献   

2.
《Journal of Graph Theory》2018,88(2):237-254
Let be k nonnegative integers. A graph G is ‐colorable if the vertex set can be partitioned into k sets , such that the subgraph , induced by , has maximum degree at most for . Let denote the family of plane graphs with neither adjacent 3‐cycles nor 5‐cycles. Borodin and Raspaud (2003) conjectured that each graph in is (0, 0, 0)‐colorable (which was disproved very recently). In this article, we prove that each graph in is (1, 1, 0)‐colorable, which improves the results by Xu (2009) and Liu‐Li‐Yu (2016).  相似文献   

3.
In this article, we study so‐called rooted packings of rooted graphs. This concept is a mutual generalization of the concepts of a vertex packing and an edge packing of a graph. A rooted graph is a pair , where G is a graph and . Two rooted graphs and are isomorphic if there is an isomorphism of the graphs G and H such that S is the image of T in this isomorphism. A rooted graph is a rooted subgraph of a rooted graph if H is a subgraph of G and . By a rooted ‐packing into a rooted graph we mean a collection of rooted subgraphs of isomorphic to such that the sets of edges are pairwise disjoint and the sets are pairwise disjoint. In this article, we concentrate on studying maximum ‐packings when H is a star. We give a complete classification with respect to the computational complexity status of the problems of finding a maximum ‐packing of a rooted graph when H is a star. The most interesting polynomial case is the case when H is the 2‐edge star and S contains the center of the star only. We prove a min–max theorem for ‐packings in this case.  相似文献   

4.
《Journal of Graph Theory》2018,87(4):660-671
If G is a graph and is a set of subgraphs of G, then an edge‐coloring of G is called ‐polychromatic if every graph from gets all colors present in G. The ‐polychromatic number of G, denoted , is the largest number of colors such that G has an ‐polychromatic coloring. In this article, is determined exactly when G is a complete graph and is the family of all 1‐factors. In addition is found up to an additive constant term when G is a complete graph and is the family of all 2‐factors, or the family of all Hamiltonian cycles.  相似文献   

5.
A graph is ‐colorable if its vertex set can be partitioned into r sets so that the maximum degree of the graph induced by is at most for each . For a given pair , the question of determining the minimum such that planar graphs with girth at least g are ‐colorable has attracted much interest. The finiteness of was known for all cases except when . Montassier and Ochem explicitly asked if d2(5, 1) is finite. We answer this question in the affirmative with ; namely, we prove that all planar graphs with girth at least five are (1, 10)‐colorable. Moreover, our proof extends to the statement that for any surface S of Euler genus γ, there exists a where graphs with girth at least five that are embeddable on S are (1, K)‐colorable. On the other hand, there is no finite k where planar graphs (and thus embeddable on any surface) with girth at least five are (0, k)‐colorable.  相似文献   

6.
《Journal of Graph Theory》2018,88(2):294-301
Suppose is a loopless graph and is the graph obtained from G by subdividing each of its edges k () times. Let be the set of all spanning trees of G, be the line graph of the graph and be the number of spanning trees of . By using techniques from electrical networks, we first obtain the following simple formula: Then we find it is in fact equivalent to a complicated formula obtained recently using combinatorial techniques in [F. M. Dong and W. G. Yan, Expression for the number of spanning trees of line graphs of arbitrary connected graphs, J. Graph Theory. 85 (2017) 74–93].  相似文献   

7.
A classical theorem of Brooks in graph coloring theory states that every connected graph G has its chromatic number less than or equal to its maximum degree , unless G is a complete graph or an odd cycle in which case is equal to . Brooks' theorem has been extended to list colorings by Erd?s, Rubin, and Taylor (and, independently, by Vizing) and to some of their variants such as list T‐colorings and pair‐list colorings. The bichromatic number is a relatively new parameter arisen in the study of extremal hereditary properties of graphs. This parameter simultaneously generalizes the chromatic number and the clique covering number of a graph. In this article, we prove a theorem, akin to that of Brooks, which states that every graph G has its bichromatic number less than or equal to its bidegree , unless G belongs to a set of specified graphs in which case is equal to .  相似文献   

8.
According to the classical Erd?s–Pósa theorem, given a positive integer k, every graph G either contains k vertex disjoint cycles or a set of at most vertices that hits all its cycles. Robertson and Seymour (J Comb Theory Ser B 41 (1986), 92–114) generalized this result in the best possible way. More specifically, they showed that if is the class of all graphs that can be contracted to a fixed planar graph H, then every graph G either contains a set of k vertex‐disjoint subgraphs of G, such that each of these subgraphs is isomorphic to some graph in or there exists a set S of at most vertices such that contains no subgraph isomorphic to any graph in . However, the function f is exponential. In this note, we prove that this function becomes quadratic when consists all graphs that can be contracted to a fixed planar graph . For a fixed c, is the graph with two vertices and parallel edges. Observe that for this corresponds to the classical Erd?s–Pósa theorem.  相似文献   

9.
A coloring of the edges of a graph G is strong if each color class is an induced matching of G. The strong chromatic index of G, denoted by , is the least number of colors in a strong edge coloring of G. Chang and Narayanan (J Graph Theory 73(2) (2013), 119–126) proved recently that for a 2‐degenerate graph G. They also conjectured that for any k‐degenerate graph G there is a linear bound , where c is an absolute constant. This conjecture is confirmed by the following three papers: in (G. Yu, Graphs Combin 31 (2015), 1815–1818), Yu showed that . In (M. Debski, J. Grytczuk, M. Sleszynska‐Nowak, Inf Process Lett 115(2) (2015), 326–330), D?bski, Grytczuk, and ?leszyńska‐Nowak showed that . In (T. Wang, Discrete Math 330(6) (2014), 17–19), Wang proved that . If G is a partial k‐tree, in (M. Debski, J. Grytczuk, M. Sleszynska‐Nowak, Inf Process Lett 115(2) (2015), 326–330), it is proven that . Let be the line graph of a graph G, and let be the square of the line graph . Then . We prove that if a graph G has an orientation with maximum out‐degree k, then has coloring number at most . If G is a k‐tree, then has coloring number at most . As a consequence, a graph with has , and a k‐tree G has .  相似文献   

10.
Extremal problems for graph homomorphisms have recently become a topic of much research. Let denote the number of homomorphisms from G to H. A natural set of problems arises when we fix an image graph H and determine which graph(s) G on n vertices and m edges maximize . We prove that if H is loop‐threshold, then, for every n and m, there is a threshold graph G with n vertices and m edges that maximizes . Similarly, we show that loop‐quasi‐threshold image graphs have quasi‐threshold extremal graphs. In the case , the path on three vertices in which every vertex in looped, the authors [5] determined a set of five graphs, one of which must be extremal for . Also in this article, using similar techniques, we determine a set of extremal graphs for “the fox,” a graph formed by deleting the loop on one of the end‐vertices of . The fox is the unique connected loop‐threshold image graph on at most three vertices for which the extremal problem was not previously solved.  相似文献   

11.
We take an application of the Kernel Lemma by Kostochka and Yancey [11] to its logical conclusion. The consequence is a sort of magical way to draw conclusions about list coloring (and online list coloring) just from the existence of an independent set incident to many edges. We use this to prove an Ore‐degree version of Brooks' Theorem for online list‐coloring. The Ore‐degree of an edge in a graph G is . The Ore‐degree of G is . We show that every graph with and is online ‐choosable. In addition, we prove an upper bound for online list‐coloring triangle‐free graphs: . Finally, we characterize Gallai trees as the connected graphs G with no independent set incident to at least edges.  相似文献   

12.
《Journal of Graph Theory》2018,88(4):577-591
Given a zero‐sum function with , an orientation D of G with in for every vertex is called a β‐orientation. A graph G is ‐connected if G admits a β‐orientation for every zero‐sum function β. Jaeger et al. conjectured that every 5‐edge‐connected graph is ‐connected. A graph is ‐extendable at vertex v if any preorientation at v can be extended to a β‐orientation of G for any zero‐sum function β. We observe that if every 5‐edge‐connected essentially 6‐edge‐connected graph is ‐extendable at any degree five vertex, then the above‐mentioned conjecture by Jaeger et al. holds as well. Furthermore, applying the partial flow extension method of Thomassen and of Lovász et al., we prove that every graph with at least four edge‐disjoint spanning trees is ‐connected. Consequently, every 5‐edge‐connected essentially 23‐edge‐connected graph is ‐extendable at any degree five vertex.  相似文献   

13.
《Journal of Graph Theory》2018,88(1):222-231
A well‐known theorem of Gomory and Hu states that if G is a finite graph with nonnegative weights on its edges, then there exists a tree T (now called a Gomory‐Hu tree) on such that for all there is an such that the two components of determine an optimal (minimal valued) cut between u an v in G. In this article, we extend their result to infinite weighted graphs with finite total weight. Furthermore, we show by an example that one cannot omit the condition of the finiteness of the total weight.  相似文献   

14.
The separation dimension of a hypergraph G is the smallest natural number k for which the vertices of G can be embedded in so that any pair of disjoint edges in G can be separated by a hyperplane normal to one of the axes. Equivalently, it is the cardinality of a smallest family of total orders of , such that for any two disjoint edges of G, there exists at least one total order in in which all the vertices in one edge precede those in the other. Separation dimension is a monotone parameter; adding more edges cannot reduce the separation dimension of a hypergraph. In this article, we discuss the influence of separation dimension and edge‐density of a graph on one another. On one hand, we show that the maximum separation dimension of a k‐degenerate graph on n vertices is and that there exists a family of 2‐degenerate graphs with separation dimension . On the other hand, we show that graphs with bounded separation dimension cannot be very dense. Quantitatively, we prove that n‐vertex graphs with separation dimension s have at most edges. We do not believe that this bound is optimal and give a question and a remark on the optimal bound.  相似文献   

15.
Let and denote the second largest eigenvalue and the maximum number of edge‐disjoint spanning trees of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and bounds of , Cioab? and Wong conjectured that for any integers and a d‐regular graph G, if , then . They proved the conjecture for , and presented evidence for the cases when . Thus the conjecture remains open for . We propose a more general conjecture that for a graph G with minimum degree , if , then . In this article, we prove that for a graph G with minimum degree δ, each of the following holds.
  • (i) For , if and , then .
  • (ii) For , if and , then .
Our results sharpen theorems of Cioab? and Wong and give a partial solution to Cioab? and Wong's conjecture and Seymour's problem. We also prove that for a graph G with minimum degree , if , then the edge connectivity is at least k, which generalizes a former result of Cioab?. As corollaries, we investigate the Laplacian and signless Laplacian eigenvalue conditions on and edge connectivity.  相似文献   

16.
《Journal of Graph Theory》2018,87(3):347-355
Ther‐dynamic choosability of a graph G, written , is the least k such that whenever each vertex is assigned a list of at least k colors a proper coloring can be chosen from the lists so that every vertex v has at least neighbors of distinct colors. Let ch(G) denote the choice number of G. In this article, we prove when is bounded. We also show that there exists a constant C such that the random graph with almost surely satisfies . Also if G is a triangle‐free regular graph, then we have .  相似文献   

17.
For graphs of bounded maximum average degree, we consider the problem of 2‐distance coloring, that is, the problem of coloring the vertices while ensuring that two vertices that are adjacent or have a common neighbor receive different colors. We prove that graphs with maximum average degree less than and maximum degree Δ at least 4 are 2‐distance ‐colorable, which is optimal and improves previous results from Dolama and Sopena, and from Borodin et al. We also prove that graphs with maximum average degree less than (resp. , ) and maximum degree Δ at least 5 (resp. 6, 8) are list 2‐distance ‐colorable, which improves previous results from Borodin et al., and from Ivanova. We prove that any graph with maximum average degree m less than and with large enough maximum degree Δ (depending only on m) can be list 2‐distance ‐colored. There exist graphs with arbitrarily large maximum degree and maximum average degree less than 3 that cannot be 2‐distance ‐colored: the question of what happens between and 3 remains open. We prove also that any graph with maximum average degree can be list 2‐distance ‐colored (C depending only on m). It is optimal as there exist graphs with arbitrarily large maximum degree and maximum average degree less than 4 that cannot be 2‐distance colored with less than colors. Most of the above results can be transposed to injective list coloring with one color less.  相似文献   

18.
This article determines the set of the circular flow numbers of regular graphs. Let be the set of the circular flow numbers of graphs, and be the set of the circular flow numbers of d‐regular graphs. If d is even, then . For it is known 6 that . We show that . Hence, the interval is the only gap for circular flow numbers of ‐regular graphs between and 5. Furthermore, if Tutte's 5‐flow conjecture is false, then it follows, that gaps for circular flow numbers of graphs in the interval [5, 6] are due for all graphs not just for regular graphs.  相似文献   

19.
For a graph G and a tree‐decomposition of G, the chromatic number of is the maximum of , taken over all bags . The tree‐chromatic number of G is the minimum chromatic number of all tree‐decompositions of G. The path‐chromatic number of G is defined analogously. In this article, we introduce an operation that always increases the path‐chromatic number of a graph. As an easy corollary of our construction, we obtain an infinite family of graphs whose path‐chromatic number and tree‐chromatic number are different. This settles a question of Seymour (J Combin Theory Ser B 116 (2016), 229–237). Our results also imply that the path‐chromatic numbers of the Mycielski graphs are unbounded.  相似文献   

20.
Birmele [J Graph Theory 2003] proved that every graph with circumference t has treewidth at most . Under the additional assumption of 2‐connectivity, such graphs have bounded pathwidth, which is a qualitatively stronger conclusion. Birmele's theorem was extended by Birmele et al. [Combinatorica 2007] who showed that every graph without k disjoint cycles of length at least t has treewidth . Our main result states that, under the additional assumption of ‐connectivity, such graphs have bounded pathwidth. In fact, they have pathwidth . Moreover, examples show that ‐connectivity is required for bounded pathwidth to hold. These results suggest the following general question: for which values of k and graphs H does every k‐connected H‐minor‐free graph have bounded pathwidth? We discuss this question and provide a few observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号