首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设H是阶为n的连通图.在H的某一个顶点上悬挂一棵阶为j的树,得到图H_j,用H_j表示这样的图形族.本文证明:当j充分大时,有r(G,H_j)=(x(G)-1)(n+j-1)+s(G),其中x(G),s(G)分别表示图G的色数和色数剩余.  相似文献   

2.
We show that if G is a Ramsey size‐linear graph and x,yV (G) then if we add a sufficiently long path between x and y we obtain a new Ramsey size‐linear graph. As a consequence we show that if G is any graph such that every cycle in G contains at least four consecutive vertices of degree 2 then G is Ramsey size‐linear. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 1–5, 2002  相似文献   

3.
The Ramsey number R(G1,G2) of two graphs G1 and G2 is the least integer p so that either a graph G of order p contains a copy of G1 or its complement Gc contains a copy of G2. In 1973, Burr and Erd?s offered a total of $25 for settling the conjecture that there is a constant c = c(d) so that R(G,G)≤ c|V(G)| for all d‐degenerate graphs G, i.e., the Ramsey numbers grow linearly for d‐degenerate graphs. We show in this paper that the Ramsey numbers grow linearly for degenerate graphs versus some sparser graphs, arrangeable graphs, and crowns for example. This implies that the Ramsey numbers grow linearly for degenerate graphs versus graphs with bounded maximum degree, planar graphs, or graphs without containing any topological minor of a fixed clique, etc. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

4.
We introduce the notion of the boundary clique and the k-overlap clique graph and prove the following: Every incomplete chordal graph has two nonadjacent simplicial vertices lying in boundary cliques. An incomplete chordal graph G is k-connected if and only if the k-overlap clique graph gk(G) is connected. We give an algorithm to construct a clique tree of a connected chordal graph and characterize clique trees of connected chordal graphs using the algorithm.  相似文献   

5.
For graphs F and H, we say F is Ramsey for H if every 2‐coloring of the edges of F contains a monochromatic copy of H. The graph F is Ramsey Hminimal if F is Ramsey for H and there is no proper subgraph of F so that is Ramsey for H. Burr et al. defined to be the minimum degree of F over all Ramsey H‐minimal graphs F. Define to be a graph on vertices consisting of a complete graph on t vertices and one additional vertex of degree d. We show that for all values ; it was previously known that , so it is surprising that is much smaller. We also make some further progress on some sparser graphs. Fox and Lin observed that for all graphs H, where is the minimum degree of H; Szabó et al. investigated which graphs have this property and conjectured that all bipartite graphs H without isolated vertices satisfy . Fox et al. further conjectured that all connected triangle‐free graphs with at least two vertices satisfy this property. We show that d‐regular 3‐connected triangle‐free graphs H, with one extra technical constraint, satisfy ; the extra constraint is that H has a vertex v so that if one removes v and its neighborhood from H, the remainder is connected.  相似文献   

6.
In this paper we characterize the convex dominating sets in the composition and Cartesian product of two connected graphs. The concepts of clique dominating set and clique domination number of a graph are defined. It is shown that the convex domination number of a composition G[H] of two non-complete connected graphs G and H is equal to the clique domination number of G. The convex domination number of the Cartesian product of two connected graphs is related to the convex domination numbers of the graphs involved.  相似文献   

7.
The Ramsey number Rk(G) of a graph G is the minimum number N, such that any edge coloring of KN with k colors contains a monochromatic copy of G. The constrained Ramsey number f(G, T) of the graphs G and T is the minimum number N, such that any edge coloring of KN with any number of colors contains a monochromatic copy of G or a rainbow copy of T. We show that these two quantities are closely related when T is a matching. Namely, for almost all graphs G, f(G, tK2) = Rt ? 1(G) for t≥2. © 2010 Wiley Periodicals, Inc. J Graph Theory 67:91‐95, 2011  相似文献   

8.
The size‐Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2‐edge‐coloring of H yields a monochromatic copy of G. Size‐Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size‐Ramsey numbers for k‐uniform hypergraphs. Analogous to the graph case, we consider the size‐Ramsey number of cliques, paths, trees, and bounded degree hypergraphs. Our results suggest that size‐Ramsey numbers for hypergraphs are extremely difficult to determine, and many open problems remain.  相似文献   

9.
A local complementation of a simple graph G at a vertex v consists in replacing the subgraph induced by G on the neighborhood of v by the complementary graph. Two graphs are locally equivalent if they are related by a sequence of local complementations. H. M. Mulder conjectured that any two locally equivalent trees are isomorphic. We prove this conjecture and we characterize those graphs that are locally equivalent to trees.  相似文献   

10.
In this paper we investigate the problem of clique‐coloring, which consists in coloring the vertices of a graph in such a way that no monochromatic maximal clique appears, and we focus on odd‐hole‐free graphs. On the one hand we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, but on the other hand it is NP‐hard to decide if they are 2‐clique‐colorable, and we do not know if there exists any bound k0 such that they are all k0 ‐clique‐colorable. First we will prove that (odd hole, codiamond)‐free graphs are 2‐clique‐colorable. Then we will demonstrate that the complexity of 2‐clique‐coloring odd‐hole‐free graphs is actually Σ2 P‐complete. Finally we will study the complexity of deciding whether or not a graph and all its subgraphs are 2‐clique‐colorable. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 139–156, 2009  相似文献   

11.
In this article we study multipartite Ramsey numbers for odd cycles. Our main result is the proof that a conjecture of Gyárfás et al. (J Graph Theory 61 (2009), 12–21), holds for graphs with a large enough number of vertices. Precisely, there exists n0 such that if n?n0 is a positive odd integer then any two‐coloring of the edges of the complete five‐partite graph K(n ? 1)/2, (n ? 1)/2, (n ? 1)/2, (n ? 1)/2, 1 contains a monochromatic cycle of length n. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

12.
A graph is Ramsey unsaturated if there exists a proper supergraph of the same order with the same Ramsey number, and Ramsey saturated otherwise. We present some conjectures and results concerning both Ramsey saturated and unsaturated graphs. In particular, we show that cycles Cn and paths Pn on n vertices are Ramsey unsaturated for all n ≥ 5. © 2005 Wiley Periodicals, Inc.  相似文献   

13.
Let k be a fixed integer at least 3. It is proved that every graph of order (2k ? 1 ? 1/k)n + O(1) contains n vertex disjoint induced subgraphs of order k such that these subgraphs are equivalent to each other and they are equivalent to one of four graphs: a clique, an independent set, a star, or the complement of a star. In particular, by substituting 3 for k, it is proved that every graph of order 14n/3 + O(1) contains n vertex disjoint induced subgraphs of order 3 such that they are equivalent to each other. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 159–166, 2007  相似文献   

14.
A Gallai‐coloring of a complete graph is an edge coloring such that no triangle is colored with three distinct colors. Gallai‐colorings occur in various contexts such as the theory of partially ordered sets (in Gallai's original paper) or information theory. Gallai‐colorings extend 2‐colorings of the edges of complete graphs. They actually turn out to be close to 2‐colorings—without being trivial extensions. Here, we give a method to extend some results on 2‐colorings to Gallai‐colorings, among them known and new, easy and difficult results. The method works for Gallai‐extendible families that include, for example, double stars and graphs of diameter at most d for 2?d, or complete bipartite graphs. It follows that every Gallai‐colored Kn contains a monochromatic double star with at least 3n+ 1/4 vertices, a monochromatic complete bipartite graph on at least n/2 vertices, monochromatic subgraphs of diameter two with at least 3n/4 vertices, etc. The generalizations are not automatic though, for instance, a Gallai‐colored complete graph does not necessarily contain a monochromatic star on n/2 vertices. It turns out that the extension is possible for graph classes closed under a simple operation called equalization. We also investigate Ramsey numbers of graphs in Gallai‐colorings with a given number of colors. For any graph H let RG(r, H) be the minimum m such that in every Gallai‐coloring of Km with r colors, there is a monochromatic copy of H. We show that for fixed H, RG (r, H) is exponential in r if H is not bipartite; linear in r if H is bipartite but not a star; constant (does not depend on r) if H is a star (and we determine its value). © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 233–243, 2010  相似文献   

15.
We color the nodes of a graph by first applying successive contractions to non-adjacent nodes until we get a clique; then we color the clique and decontract the graph. We show that this algorithm provides a minimum coloring and a maximum clique for any Meyniel graph by using a simple rule for choosing which nodes are to be contracted. This O(n3) algorithm is much simpler than those already existing for Meyniel graphs. Moreover, the optimality of this algorithm for Meyniel graphs provides an alternate nice proof of the following result of Hoàng: a graph G is Meyniel if and only if, for any induced subgraph of G, each node belongs to a stable set that meets all maximal cliques. Finally we give a new characterization for Meyniel graphs.  相似文献   

16.
A pair of vertices (x,y) of a graph G is an o-critical pair if o(G + xy) > o(G), where G + xy denotes the graph obtained by adding the edge xy to G and o(H) is the clique number of H. The o-critical pairs are never edges in G. A maximal stable set S of G is called a forced color class of G if S meets every o-clique of G, and o-critical pairs within S form a connected graph. In 1993, G. Bacsó raised the following conjecture which implies the famous Strong Perfect Graph Conjecture: If G is a uniquely o-colorable perfect graph, then G has at least one forced color class. This conjecture is called the Bold Conjecture. Here we show a simple counterexample to it. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 165–168, 1997  相似文献   

17.
A graph is clique-Helly if any family of mutually intersecting (maximal) cliques has non-empty intersection, and it is hereditary clique-Helly (HCH) if its induced subgraphs are clique-Helly. The clique graph of a graph G is the intersection graph of its cliques, and G is self-clique if it is connected and isomorphic to its clique graph. We show that every HCH graph is an induced subgraph of a self-clique HCH graph, and give a characterization of self-clique HCH graphs in terms of their constructibility starting from certain digraphs with some forbidden subdigraphs. We also specialize this results to involutive HCH graphs, i.e. self-clique HCH graphs whose vertex-clique bipartite graph admits a part-switching involution.  相似文献   

18.
The following is a conjecture of Ulam: In any partition of the integer lattice on the plane into uniformly bounded sets, there exists a set that is adjacent to at least six other sets. Two sets are adjacent if each contain a vertex of the same unit square. This problem is generalized as follows. Given any uniformly bounded partitionP of the vertex set of an infinite graphG with finite maximum degree, letP (G) denote the graph obtained by letting each set of the partition be a vertex ofP (G) where two vertices ofP (G) are adjacent if and only if the corresponding sets have an edge between them. The Ulam number ofG is defined as the minimum of the maximum degree ofP (G) where the minimum is taken over all uniformly bounded partitionsP. We have characterized the graphs with Ulam number 0, 1, and 2. Restricting the partitions of the vertex set to connected subsets, we obtain the connected Ulam number ofG. We have evaluated the connected Ulam numbers for several infinite graphs. For instance we have shown that the connected Ulam number is 4 ifG is an infinite grid graph. We have settled the Ulam conjecture for the connected case by proving that the connected Ulam number is 6 for an infinite triangular grid graph. The general Ulam conjecture is equivalent to proving that the Ulam number of the infinite triangular grid graph equals 6. We also describe some interesting geometric consequences of the Ulam number, mainly concerning good drawings of infinite graphs.  相似文献   

19.
20.
The clique graph of a graph G is the graph obtained by taking the cliques of G as vertices, and two vertices are adjacent if and only if the corresponding cliques have a non-empty intersection. A graph is self-clique if it is isomorphic to its clique graph. We give a new characterization of the set of all connected self-clique graphs having all cliques but two of size 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号