共查询到20条相似文献,搜索用时 0 毫秒
1.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a′(G) ? Δ + 2, where Δ = Δ(G) denotes the maximum degree of the graph. If every induced subgraph H of G satisfies the condition |E(H)| ? 2|V(H)|?1, we say that the graph G satisfies Property A. In this article, we prove that if G satisfies Property A, then a′(G) ? Δ + 3. Triangle‐free planar graphs satisfy Property A. We infer that a′(G) ? Δ + 3, if G is a triangle‐free planar graph. Another class of graph which satisfies Property A is 2‐fold graphs (union of two forests). © 2011 Wiley Periodicals, Inc. J Graph Theory 相似文献
2.
Let G be a planar triangle‐free graph and let C be a cycle in G of length at most 8. We characterize all situations where a 3‐coloring of C does not extend to a proper 3‐coloring of the whole graph. 相似文献
3.
Consider a graph G on n vertices satisfying the following Ore‐type condition: for any two nonadjacent vertices x and y of G, we have . We conjecture that if we color the edges of G with two colors then the vertex set of G can be partitioned to two vertex disjoint monochromatic cycles of distinct colors. In this article, we prove an asymptotic version of this conjecture. 相似文献
4.
Cafer Caliskan 《组合设计杂志》2016,24(8):343-351
Let G be a graph of order n satisfying that there exists for which every graph of order n and size t is contained in exactly λ distinct subgraphs of the complete graph isomorphic to G. Then G is called t‐edge‐balanced and λ the index of G. In this article, new examples of 2‐edge‐balanced graphs are constructed from bipartite graphs and some further methods are introduced to obtain more from old. 相似文献
5.
A graph G of order n is called t‐edge‐balanced if G satisfies the property that there exists a positive λ for which every graph of order n and size t is contained in exactly λ distinct subgraphs of isomorphic to G. We call λ the index of G. In this article, we obtain new infinite families of 2‐edge‐balanced graphs. 相似文献
6.
Matthew White 《Journal of Graph Theory》2017,85(1):133-151
Li et al. (Discrete Math 310 (2010), 3579–3583) asked how long the longest monochromatic cycle in a 2‐edge‐colored graph G with minimum degree at least could be. In this article, an answer is given for all to an asymptotic form of their question. 相似文献
7.
We prove that the strong chromatic index of a 2‐degenerate graph is linear in the maximum degree Δ. This includes the class of all chordless graphs (graphs in which every cycle is induced) which in turn includes graphs where the cycle lengths are multiples of four, and settles a problem by Faudree et al. (Ars Combin 29(B) (1990), 205–211). © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 119–126, 2013 相似文献
8.
A proper edge coloring of a graph G without isolated edges is neighbor‐distinguishing if any two adjacent vertices have distinct sets consisting of colors of their incident edges. The neighbor‐distinguishing index of G is the minimum number ndi(G) of colors in a neighbor‐distinguishing edge coloring of G. Zhang, Liu, and Wang in 2002 conjectured that if G is a connected graph of order at least 6. In this article, the conjecture is verified for planar graphs with maximum degree at least 12. 相似文献
9.
《Journal of Graph Theory》2018,87(4):399-429
We consider an extremal problem motivated by a article of Balogh [J. Balogh, A remark on the number of edge colorings of graphs, European Journal of Combinatorics 27, 2006, 565–573], who considered edge‐colorings of graphs avoiding fixed subgraphs with a prescribed coloring. More precisely, given , we look for n‐vertex graphs that admit the maximum number of r‐edge‐colorings such that at most colors appear in edges incident with each vertex, that is, r‐edge‐colorings avoiding rainbow‐colored stars with t edges. For large n, we show that, with the exception of the case , the complete graph is always the unique extremal graph. We also consider generalizations of this problem. 相似文献
10.
We classify noncomplete prime valency graphs satisfying the property that their automorphism group is transitive on both the set of arcs and the set of 2‐geodesics. We prove that either Γ is 2‐arc transitive or the valency p satisfies , and for each such prime there is a unique graph with this property: it is a nonbipartite antipodal double cover of the complete graph with automorphism group and diameter 3. 相似文献
11.
Manu Basavaraju Pinar Heggernes Pim van ′t Hof Reza Saei Yngve Villanger 《Journal of Graph Theory》2016,83(3):231-250
An induced matching in a graph is a set of edges whose endpoints induce a 1‐regular subgraph. It is known that every n‐vertex graph has at most maximal induced matchings, and this bound is the best possible. We prove that every n‐vertex triangle‐free graph has at most maximal induced matchings; this bound is attained by every disjoint union of copies of the complete bipartite graph K3, 3. Our result implies that all maximal induced matchings in an n‐vertex triangle‐free graph can be listed in time , yielding the fastest known algorithm for finding a maximum induced matching in a triangle‐free graph. 相似文献
12.
The rank of a graph is defined to be the rank of its adjacency matrix. A graph is called reduced if it has no isolated vertices and no two vertices with the same set of neighbors. We determine the maximum order of reduced triangle‐free graphs with a given rank and characterize all such graphs achieving the maximum order. 相似文献
13.
We show that a k‐edge‐connected graph on n vertices has at least spanning trees. This bound is tight if k is even and the extremal graph is the n‐cycle with edge multiplicities . For k odd, however, there is a lower bound , where . Specifically, and . Not surprisingly, c3 is smaller than the corresponding number for 4‐edge‐connected graphs. Examples show that . However, we have no examples of 5‐edge‐connected graphs with fewer spanning trees than the n‐cycle with all edge multiplicities (except one) equal to 3, which is almost 6‐regular. We have no examples of 5‐regular 5‐edge‐connected graphs with fewer than spanning trees, which is more than the corresponding number for 6‐regular 6‐edge‐connected graphs. The analogous surprising phenomenon occurs for each higher odd edge connectivity and regularity. 相似文献
14.
15.
Rajendra M. Pawale 《组合设计杂志》2013,21(4):157-162
Triangle‐free quasi‐symmetric 2‐ designs with intersection numbers ; and are investigated. Possibility of triangle‐free quasi‐symmetric designs with or is ruled out. It is also shown that, for a fixed x and a fixed ratio , there are only finitely many triangle‐free quasi‐symmetric designs. © 2012 Wiley Periodicals, Inc. J Combin Designs 00: 1‐6, 2012 相似文献
16.
The chromatic number of a triangle‐free graph can be arbitrarily large. In this article, we show that if all subdivisions of K2, 3 are also excluded as induced subgraphs, then the chromatic number becomes bounded by 3. We give a structural characterization of this class of graphs, from which we derive an coloring algorithm, where n denotes the number of vertices and m the number of edges of the input graph. 相似文献
17.
Let
be two edge-colored graphs (without multiple edges or loops). A homomorphism is a mapping :
for which, for every pair of adjacent vertices u and v of G
1, (u) and (v) are adjacent in G
2 and the color of the edge (u)(v) is the same as that of the edge uv.We prove a number of results asserting the existence of a graphG , edge-colored from a set C, into which every member from a given class of graphs, also edge-colored from C, maps homomorphically.We apply one of these results to prove that every three-dimensional hyperbolic reflection group, having rotations of orders from the setM ={m1, m2,..., mk}, has a torsion-free subgroup of index not exceeding some bound, which depends only on the setM . 相似文献
18.
We consider graphs G with such that and for every edge e, so‐called critical graphs. Jakobsen noted that the Petersen graph with a vertex deleted, , is such a graph and has average degree only . He showed that every critical graph has average degree at least , and asked if is the only graph where equality holds. A result of Cariolaro and Cariolaro shows that this is true. We strengthen this average degree bound further. Our main result is that if G is a subcubic critical graph other than , then G has average degree at least . This bound is best possible, as shown by the Hajós join of two copies of . 相似文献
19.
Let be a plane graph with the sets of vertices, edges, and faces V, E, and F, respectively. If one can color all elements in using k colors so that any two adjacent or incident elements receive distinct colors, then G is said to be entirely k‐colorable. Kronk and Mitchem [Discrete Math 5 (1973) 253‐260] conjectured that every plane graph with maximum degree Δ is entirely ‐colorable. This conjecture has now been settled in Wang and Zhu (J Combin Theory Ser B 101 (2011) 490–501), where the authors asked: is every simple plane graph entirely ‐colorable? In this article, we prove that every simple plane graph with is entirely ‐colorable, and conjecture that every simple plane graph, except the tetrahedron, is entirely ‐colorable. 相似文献
20.
A graph G is 1‐Hamilton‐connected if is Hamilton‐connected for every vertex . In the article, we introduce a closure concept for 1‐Hamilton‐connectedness in claw‐free graphs. If is a (new) closure of a claw‐free graph G, then is 1‐Hamilton‐connected if and only if G is 1‐Hamilton‐connected, is the line graph of a multigraph, and for some , is the line graph of a multigraph with at most two triangles or at most one double edge. As applications, we prove that Thomassen's Conjecture (every 4‐connected line graph is hamiltonian) is equivalent to the statement that every 4‐connected claw‐free graph is 1‐Hamilton‐connected, and we present results showing that every 5‐connected claw‐free graph with minimum degree at least 6 is 1‐Hamilton‐connected and that every 4‐connected claw‐free and hourglass‐free graph is 1‐Hamilton‐connected. 相似文献