首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The novel mononuclear and dinuclear complexes [Ru(trpy)(bpy)(apc)][PF(6)] and [(Ru(trpy)(bpy))(2)(mu-adpc)][PF(6)](2) (bpy = 2,2'-bipyridine, trpy = 2,2':6',2' '-terpyridine, apc(-) = 4-azo(phenylcyanamido)benzene, and adpc(2)(-) = 4,4'-azodi(phenylcyanamido)) were synthesized and characterized by (1)H NMR, UV-vis, and cyclic voltammetry. Crystallography showed that the dinuclear Ru(II) complex crystallizes from diethyl ether/acetonitrile solution as [(Ru(trpy)(bpy))(2)(mu-adpc)][PF(6)](2).2(acetonitrile).2(diethyl ether). Crystal structure data are as follows: crystal system triclinic, space group P1, with a, b, and c = 12.480(2), 13.090(3) and 14.147(3) A, respectively, alpha, beta, and gamma = 79.792(3), 68.027(3), and 64.447(3) degrees, respectively, V = 1933.3(6) A(3), and Z = 1. The structure was refined to a final R factor of 0.0421. The mixed-valence complex with metal ions, separated by a through-space distance of 19.5 A, is a class III system, having the comproportionation constant K(c) = 1.3 x 10(13) and an intervalence band at 1920 nm (epsilon(max) = 10 000 M(-1) cm(-1)), in dimethylformamide solution. The results of this study strongly suggest that the bridging ligand adpc(2-) can mediate metal-metal coupling through both hole-transfer and electron-transfer superexchange mechanisms.  相似文献   

2.
Binuclear beta-diketonatoruthenium(III) complexes [[Ru(acac)(2)](2)(tae)], [[Ru(phpa)(2)](2)(tae)], and [(acac)(2)Ru(tae)Ru(phpa)(2)] and binuclear and mononuclear bipyridine complexes [[Ru(bpy)(2)](2)(tae)](PF(6))(2) and [Ru(bpy)(2)(Htae)]PF(6) (acac = 2,4-pentanedionate ion, phpa = 2,2,6,6-tetramethyl-3,5-heptanedionate ion, tae = 1,1,2,2-tetraacetylethanate dianion, and bpy = 2,2'-bipyridine) were synthesized. The new complexes have been characterized by (1)H NMR, MS, and electronic spectral data. Crystal and molecular structures of [[Ru(acac)(2)](2)(tae)] have been solved by single-crystal X-ray diffraction studies. Crystal data for the meso isomer of [[Ru(acac)(2)](2)(tae)] have been confirmed by the dihedral angle result that two acetylacetone units of the bridging tae ligand are almost perpendicular to one another. A detailed investigation on the electrochemistry of the binuclear complexes has been carried out. The electrochemical behavior details of the binuclear complexes have been compared with those of the mononuclear complexes obtained from the half-structures of the corresponding binuclear complexes. Studies on the effects of solvents on the mixed-valence states of Ru(II)-Ru(III) and Ru(III)-Ru(IV) complexes have been carried out by various voltammetric and electrospectroscopic techniques. A correlation between the comproportionation constant (K(c)) and the donor number of the solvent has been obtained. The K(c) values for the binuclear complexes have been found to be low because of the fact that two acetylacetone units of the bridging tae ligand are not in the same plane, as revealed by the crystal structure of [[Ru(acac)(2)](2)(tae)].  相似文献   

3.
Mixed-metal supramolecular complexes that couple ruthenium or osmium based light absorbers to a central rhodium(III) core have been designed which photocleave DNA upon irradiation with visible light. The complexes [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5), [[(bpy)(2)Os(dpp)](2)RhCl(2)](PF(6))(5), and [[(tpy)RuCl(dpp)](2)RhCl(2)](PF(6))(3), where bpy = 2,2'-bipyridine, tpy = 2,2':6',2' '-terpyridine, and dpp = 2,3-bis(2-pyridyl)pyrazine, all exhibit intense metal to ligand charge transfer (MLCT) based transitions in the visible but possess lower lying metal to metal charge transfer (MMCT) excited states. These supramolecular complexes with low lying MMCT states photocleave DNA when excited into their intense MLCT transitions. Structurally similar complexes without this low lying MMCT state do not exhibit DNA photocleavage, establishing the role of this MMCT state in the DNA photocleavage event. Design considerations necessary to produce functional DNA photocleavage agents are presented herein.  相似文献   

4.
Sun Y  Hudson ZM  Rao Y  Wang S 《Inorganic chemistry》2011,50(8):3373-3378
Four new Ru(II) complexes, [Ru(bpy)(2)(4,4'-BP2bpy)][PF(6)](2) (1), [Ru(t-Bu-bpy)(2)(4,4'-BP2bpy)][PF(6)](2) (2), [Ru(bpy)(2)(5,5'-BP2bpy)][PF(6)](2) (3), and [Ru(t-Bu-bpy)(2)(5,5'-BP2bpy)][PF(6)](2) (4) have been synthesized (where 4,4'-BP2bpy = 4,4'-bis(BMes(2)phenyl)-2,2'-bpy; 5,5'-BP2bpy = 5,5'-bis(BMes(2)phenyl)-2,2'-bpy (4,4'-BP2bpy); and t-Bu-bpy = 4,4'-bis(t-butyl)-2,2'-bipyridine). These new complexes have been fully characterized. The crystal structures of 3 and 4 were determined by single-crystal X-ray diffraction analyses. All four complexes display distinct metal-to-ligand charge transfer (MLCT) phosphorescence that has a similar quantum efficiency as that of [Ru(bpy)(3)][PF(6)](2) under air, but is at a much lower energy. The MLCT phosphorescence of these complexes has been found to be highly sensitive toward anions such as fluoride and cyanide, which switch the MLCT band to higher energy when added. The triarylboron groups in these compounds not only introduce this color switching mechanism, but also play a key role in the phosphorescence color of the complexes.  相似文献   

5.
Swavey S  Brewer KJ 《Inorganic chemistry》2002,41(24):6196-6198
The mixed-metal supramolecular complex, [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) (bpy = 2,2'-bipyridine and dpp = 2,3-bis(2-pyridyl)pyrazine) coupling two ruthenium light absorbers (LAs) to a central rhodium, has been shown to photocleave DNA. This system possesses a lowest lying metal to metal charge transfer (MMCT) excited state in contrast to the metal to ligand charge transfer states (MLCT) of the bpm and Ir analogues. The systems with an MLCT excited state do not photocleavage DNA. [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) is the first supramolecular system shown to cleave DNA. It functions through an excited state previously unexplored for this reactivity, a Ru --> Rh MMCT excited state. This system functions when irradiated with low energy visible light with or without molecular oxygen.  相似文献   

6.
The synthesis, characterization, and photophysical properties of the N6-N5C bichromophoric [(bpy)2Ru(I)Ru(ttpy)][PF6]3 (bpy is 2,2'-bipyridine and ttpy is 4'-p-tolyl-2,2':6',2'-terpyridine) and [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (I and II are bpy-dipyridylbenzene ditopic ligands bridged by an ethynyl and phenyl unit, respectively) complexes are reported together with the model mononuclear complexes [(bpy)2Ru(I)][PF6]2, [(bpy)2Ru(II)][PF6]2, [Ru(VI)(ttpy)][PF6] (VI is 3,5-di(2-pyridyl)-biphenyl) and [Ru(dpb)(ttpy)][PF(6)] (Hdpb is 1,3-di(2-pyridyl)-benzene). The electrochemical data show that there is little ground state electronic communication between the metal centers in the bimetallic complexes. Selective excitation of the N(5)C unit in the bichromophoric systems leads to luminescence typical for a bis-tridentate cyclometallated ruthenium complex and is similar to the [Ru(VI)(ttpy)][PF6] model complex. In contrast, the luminescence from the tris-bidentate N6 unit is efficiently quenched by energy transfer to the N5C unit. The energy transfer rate has been determined by femtosecond pump-probe measurements to 0.7 ps in the ethynyl-linked [(bpy)2Ru(I)Ru(ttpy)][PF6]3 and to 1.5 ps in the phenyl-linked [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (in acetonitrile solution at 298 K), and is inferred to occur via a Dexter mechanism.  相似文献   

7.
The bichromophoric system Ru-Ru(C)-PI ([(bpy)3Ru-Ph-Ru(dpb)(Metpy-PI)][PF6]3, where bpy is 2,2'-bipyridine, Hdpb is 1,3-di(2-pyridyl)-benzene, Metpy is 4'-methyl-2,2':6',2' '-terpyridine and PI is pyromellitimide) containing two Ru(II) polypyridyl chromophores with a N6 and a N5C ligand set, respectively, was synthesized and characterized. Its photophysical properties were investigated and compared to those of the monochromophoric cyclometalated complexes Ru(C)-PI ([Ru(dpb)(Metpy-PI)][PF6]), Ru(C)-phi-PI ([Ru(dpb)(ttpy-PI)][PF6], ttpy is 4'-p-tolyl-2,2':6',2' '-terpyridine), Ru(C)-phi ([Ru(dpb)(ttpy)][PF6]), and Ru(C) ([Ru(dpb)(Metpy)][PF6]). Excitation of the Ru(C) unit in the dyads leads to oxidative quenching, forming the Ru(C)(III)-phi-PI*- and Ru(C)(III)-Pl.- charge-separated (CS) states with k(f)(ET) = 7.7 x 10(7) s(-1) (CH3CN, 298 K) in the tolyl-linked Ru(C)-phi-PI and k(f)(ET) = 4.4 x 10(9) s(-1) (CH2Cl2, 298 K) in the methylene-linked Ru(C)-PI. In the Ru-Ru(C)-PI triad, excitation of the Ru(C) chromophore leads to dynamics similar to those in the Ru(C)-PI dyad, generating the Ru(II)-Ru(C)(III)-PI*- CS state, whereas excitation of the Ru unit results in an initial energy transfer (k(EnT) = 4.7 x 10(11) s(-1)) to the cyclometalated Ru(C) unit. Subsequent electron transfer to the PI acceptor results in the formation of the same Ru(II)-Ru(C)(III)-PI*- CS state with k(f)(ET) = 5.6 x 10(9) s(-1) that undergoes rapid recombination with k(b)(ET) = 1 x 10(10) s(-1) (CH2Cl2, 298 K). The fate of the Ru(II)-Ru(C)(III)-PI*- CS state upon a second photoexcitation was studied by pump-pump-probe experiments in an attempt to detect the fully charge-separated Ru(III)-Ru(C)(II)-PI*- state.  相似文献   

8.
Cyclodextrin cups have been employed to build supramolecular systems consisting of metal and organic photoactive/redox-active components; the photoinduced communication between redox-active units assembled in water via noncovalent interactions is established. The functionalization of a beta-cyclodextrin with a terpyridine unit, ttp-beta-CD, is achieved by protection of all but one of the hydroxyl groups by methylation and attachment of the ttp unit on the free primary hydroxyl group. The metalloreceptors [(beta-CD-ttp)Ru(ttp)][PF(6)](2), [(beta-CD-ttp)Ru(tpy)][PF(6)](2), and [Ru(beta-CD-ttp)(2)][PF(6)](2) are synthesized and fully characterized. The [(beta-CD-ttp)Ru(ttp)][PF(6)](2) metalloreceptor exhibits luminescence in water, centered at 640 nm, from the (3)MLCT state with a lifetime of 1.9 ns and a quantum yield of Phi = 4.1 x 10(-)(5). Addition of redox-active quinone guests AQS, AQC, and BQ to an aqueous solution of [(beta-CD-ttp)Ru(ttp)](2+) results in quenching of the luminescence up to 40%, 20%, and 25%, respectively. Measurement of the binding strength indicates that, in saturation conditions, 85% for AQS and 77% for AQC are bound. The luminescence quenching is attributed to an intercomponent electron transfer from the appended ruthenium center to the quinone guest inside the cavity. Control experiments demonstrate no bimolecular quenching at these conditions. A photoactive osmium metalloguest, [Os(biptpy)(tpy)][PF(6)], is designed with a biphenyl hydrophobic tail for insertion in the cyclodextrin cavity. The complex is luminescent at room temperature with an emission band maximum at 730 nm and a lifetime of 116 ns. The osmium(III) species are formed for the study of photoinduced electron transfer upon their assembly with the ruthenium cyclodextrin, [(beta-CD-ttp)Ru(ttp)](2+). Time-resolved spectroscopy studies show a short component of 10 ps, attributed to electron transfer from Ru(II) to Os(III) giving an electron transfer rate 9.5 x 10(9) s(-)(1).  相似文献   

9.
This work describes a study of Ru(II) and Os(II) polypyridyl complexes of the symmetrical, fused-aromatic bridging ligand dibenzoeilatin (1). The synthesis, purification, and structural characterization by NMR of the mononuclear complexes [Ru(bpy)(2)(dbneil)](2+) (2), [Ru(tmbpy)(2)(dbneil)](2+) (3), and [Os(bpy)(2)(dbneil)](2+) (4), the homodinuclear complexes [[Ru(bpy)(2)](2)[micro-dbneil]](4+) (5), [[Ru(tmbpy)(2)](2)[micro-dbneil]](4+) (6), and [[Os(bpy)(2)](2)[micro-dbneil]](4+) (7), and the heterodinuclear complex [[Ru(bpy)(2)][micro-dbneil][Os(bpy)(2)]](4+) (8) are described, along with the crystal structures of 4, 6, and 7. Absorption spectra of the mononuclear complexes feature a low-lying MLCT band around 600 nm. The coordination of a second metal fragment results in a dramatic red shift of the MLCT band to beyond 700 nm. Cyclic and square wave voltammograms of the mononuclear complexes exhibit one reversible metal-based oxidation, as well as several ligand-based reduction waves. The first two reductions, attributed to reduction of the dibenzoeilatin ligand, are substantially anodically shifted compared to [M(bpy)(3)](2+) (M = Ru, Os), consistent with the low-lying pi orbital of dibenzoeilatin. The dinuclear complexes exhibit two reversible, well-resolved, metal-centered oxidation waves, despite the chemical equivalence of the two metal centers, indicating a significant metal-metal interaction mediated by the conjugated dibenzoeilatin ligand. Luminescence spectra, quantum yield, and lifetime measurements at room temperature in argon-purged acetonitrile have shown that the complexes exhibit (3)MLCT emission, which occurs in the IR-region between 950 and 1300 nm. The heterodinuclear complex 8 exhibits luminescence only from the Ru-based fragment, the intensity of which is less than 1% of that observed in the corresponding homodinuclear complex 5; no emission from the Os-based unit is observed, and an intramolecular quenching constant of k(q) > or = 3 x10(9) s(-)(1) is evaluated. The nature of the quenching process is briefly discussed.  相似文献   

10.
Two new ditopic ligands, 5,5"-azobis(2,2'-bipyridine) (5,5"-azo) and 5,5"-azoxybis(2,2'-bipyridine) (5,5"-azoxy), were prepared by the reduction of nitro precursors. Mononuclear and dinuclear Ru(II) complexes having one of these bridging ligands and 2,2'-bipyridine terminal ligands were also prepared, and their properties were compared with previously reported Ru(II) complexes having 4,4"-azobis(2,2'-bipyridine) (4,4"-azo). The X-ray crystal structure showed that 5,5"-azo adopts the trans conformation and a planar rodlike shape. The X-ray crystal structure of [(bpy)(2)Ru(5,5"-azo)Ru(bpy)(2)](PF(6))(4) (Ru(5,5"-azo)Ru) showed that the bridging ligand is in the trans conformation and nearly planar also in the complex and the metal-to-metal distance is 10.0 A. The azo or azoxy ligand in these complexes exhibits reduction processes at less negative potentials than the terminal bpy's due to the low-lying pi level. The electronic absorption spectra for the complexes having 5,5"-azo or 5,5"-azoxy exhibit an extended low-energy metal-to-ligand charge-transfer absorption. The ligands, 5,5"-azo and 5,5"-azoxy, and the mononuclear complex, [(bpy)(2)Ru(5,5"-azo)](2+), isomerize reversibly upon light irradiation. The low-energy MLCT state sensitizes the isomerization of the azo moiety in this complex. While [(bpy)(2)Ru(4,4"-azo)Ru(bpy)(2)](PF(6))(4) exhibits light switch properties, namely, significant electrochromism and a large luminescence enhancement, upon reduction, Ru(5,5"-azo)Ru does not show these properties. The radical anion formation upon reduction of these complexes has been confirmed by ESR spectroscopy.  相似文献   

11.
We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF(6))(2), [1](PF(6))(2)-[5](PF(6))(2), and [{Ru(L-L)(2)}(2)(μ-tape)](PF(6))(4), [6](PF(6))(4)-[10](PF(6))(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4'5,5'-tetramethyl-2,2'-bipyridine)}, respectively, were synthesized. The X-ray structures of tape·2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF(6))(2)·0.5CH(3)CN·0.5toluene, [Ru(dmbpy)(2)(tape)](PF(6))(2)·2toluene and [Ru(dtbbpy)(2)(tape)](PF(6))(2)·3acetone·0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(ii) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazin (tpphz) species.  相似文献   

12.
The oxidation state of the chromium center in the following compounds has been probed using a combination of chromium K-edge X-ray absorption spectroscopy and density functional theory: [Cr(phen)(3)][PF(6)](2) (1), [Cr(phen)(3)][PF(6)](3) (2), [CrCl(2)((t)bpy)(2)] (3), [CrCl(2)(bpy)(2)]Cl(0.38)[PF(6)](0.62) (4), [Cr(TPP)(py)(2)] (5), [Cr((t)BuNC)(6)][PF(6)](2) (6), [CrCl(2)(dmpe)(2)] (7), and [Cr(Cp)(2)] (8), where phen is 1,10-phenanthroline, (t)bpy is 4,4'-di-tert-butyl-2,2'-bipyridine, and TPP(2-) is doubly deprotonated 5,10,15,20-tetraphenylporphyrin. The X-ray crystal structures of complexes 1, [Cr(phen)(3)][OTf](2) (1'), and 3 are reported. The X-ray absorption and computational data reveal that complexes 1-5 all contain a central Cr(III) ion (S(Cr) = (3)/(2)), whereas complexes 6-8 contain a central low-spin (S = 1) Cr(II) ion. Therefore, the electronic structures of 1-8 are best described as [Cr(III)(phen(?))(phen(0))(2)][PF(6)](2), [Cr(III)(phen(0))(3)][PF(6)](3), [Cr(III)Cl(2)((t)bpy(?))((t)bpy(0))], [Cr(III)Cl(2)(bpy(0))(2)]Cl(0.38)[PF(6)](0.62), [Cr(III)(TPP(3?-))(py)(2)], [Cr(II)((t)BuNC)(6)][PF(6)](2), [Cr(II)Cl(2)(dmpe)(2)], and [Cr(II)(Cp)(2)], respectively, where (L(0)) and (L(?))(-) (L = phen, (t)bpy, or bpy) are the diamagnetic neutral and one-electron-reduced radical monoanionic forms of L, and TPP(3?-) is the one-electron-reduced doublet form of diamagnetic TPP(2-). Following our previous results that have shown [Cr((t)bpy)(3)](2+) and [Cr(tpy)(2)](2+) (tpy = 2,2':6',2"-terpyridine) to contain a central Cr(III) ion, the current results further refine the scope of compounds that may be described as low-spin Cr(II) and reveal that this is a very rare oxidation state accessible only with ligands in the strong-field extreme of the spectrochemical series.  相似文献   

13.
We describe the synthesis and characterization of 4'-tert-butyl-2,2':6',2'-terpyridine (4'-(t)Butpy, 1), a convergent tpy ligand that exhibits both a sterically demanding and solubilizing 4'-substituent. In the solid state, molecules of 1 pack with alternating tpy and tert-butyl domains, and the bulky alkyl substituents prevent the molecules from engaging in the face-to-face π-interactions which are typical of simple tpy ligands. Instead, the predominant packing forces involve CH···N hydrogen bonds and weak CH···π contacts. The syntheses of the homoleptic complexes [M(1)(2)][PF(6)](2) (M = Fe, Co, Zn and Ru) and the heteroleptic [Ru(tpy)(1)][PF(6)](2) are described. The complexes have been fully characterized in solution, including the (1)H NMR spectroscopic characterization of the paramagnetic [Co(1)(2)][PF(6)](2). Cyclic voltammetric data are consistent with the tert-butyl substituent being slightly electron releasing. The single crystal structures of [Zn(1)(2)][PF(6)](2) and [Ru(1)(2)][PF(6)](2) have been determined; the compounds are essentially isomorphous. The packing of the cations is such that the tert-butyl substituents are accommodated in pockets between the tpy domains of adjacent cations, and as a consequence, the {M(tpy)(2)}-embrace that is a ubiquitous feature of many related structures is not observed.  相似文献   

14.
The mononuclear [Ru(bpy)(2)(bpym)][PF(6)](2) complex (bpy = 2,2'-bipyridine; bpym = 2,2'-bipyrimidine) has been prepared in its enantiopure Lambda form. Because of the chelating property of the bipyrimidine moiety, it is possible to use this chiral-at-metal complex as a chiral inorganic ligand for a second metal cation acting as a catalytic center. Here we report the synthesis and the structural characterization of a novel dinuclear Lambda-[(bpy)(2)Ru(bpym)RuCl(p-cymene)](3+) compound (1). The asymmetric-inducing properties of the enantiopure chiral-at-metal metalloligand have been probed during asymmetric transfer hydrogenation to ketones catalyzed by 1. This provides one of the very few illustrations of the potential of this original class of chiral inorganic ligands.  相似文献   

15.
Zigler DF  Wang J  Brewer KJ 《Inorganic chemistry》2008,47(23):11342-11350
Bimetallic complexes of the form [(bpy)(2)Ru(BL)RhCl(2)(phen)](PF(6))(3), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and BL = 2,3-bis(2-pyridyl)pyrazine (dpp) or 2,2'-bipyrimidine (bpm), were synthesized, characterized, and compared to the [{(bpy)(2)Ru(BL)}(2)RhCl(2)](PF(6))(5) trimetallic analogues. The new complexes were synthesized via the building block method, exploiting the known coordination chemistry of Rh(III) polyazine complexes. In contrast to [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) and [{(bpy)(2)Ru(bpm)}(2)RhCl(2)](PF(6))(5), [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) have a single visible light absorber subunit coupled to the cis-Rh(III)Cl(2) moiety, an unexplored molecular architecture. The electrochemistry of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) showed a reversible oxidation at 1.61 V (vs Ag/AgCl) (Ru(III/II)), quasi-reversible reductions at -0.39 V, -0.74, and -0.98 V. The first two reductive couples corresponded to two electrons, consistent with Rh reduction. The electrochemistry of [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) exhibited a reversible oxidation at 1.76 V (Ru(III/II)). A reversible reduction at -0.14 V (bpm(0/-)), and quasi-reversible reductions at -0.77 and -0.91 V each corresponded to a one electron process, bpm(0/-), Rh(III/II), and Rh(II/I). The dpp bridged bimetallic and trimetallic display Ru(dpi)-->dpp(pi*) metal-to-ligand charge transfer (MLCT) transitions at 509 nm (14,700 M(-1) cm(-1)) and 518 nm (26,100 M(-1) cm(-1)), respectively. The bpm bridged bimetallic and trimetallic display Ru(dpi)-->bpm(pi*) charge transfer (CT) transitions at 581 nm (4,000 M(-1) cm(-1)) and 594 nm (9,900 M(-1) cm(-1)), respectively. The heteronuclear complexes [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) had (3)MLCT emissions that are Ru(dpi)-->dpp(pi*) CT in nature but were red-shifted and lower intensity than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4). The lifetimes of the (3)MLCT state of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) at room temperature (30 ns) was shorter than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4), consistent with favorable electron transfer to Rh(III) to generate a metal-to-metal charge-transfer ((3)MMCT) state. The reported synthetic methods provide means to a new molecular architecture coupling a single Ru light absorber to the Rh(III) center while retaining the interesting cis-Rh(III)Cl(2) moiety.  相似文献   

16.
Bark T  Thummel RP 《Inorganic chemistry》2005,44(24):8733-8739
A synthetic protocol involving the Friedl?nder reaction of 8-amino-7-quinolinecarbaldehyde followed by potassium dichromate oxidation was applied to 2,3,4-pentanetrione-3-oxime and 1-(pyrid-2'-yl)propane-1,2-dione-1-oxime to provide the ligands di-(phenathrolin-2-yl)-methanone (1) and phenanthrolin-2-yl-pyrid-2-yl-methanone (8), respectively. Ligand 1 complexed as a planar tetradentate with Pd(II) to form [Pd(1)](BF4)2 and with Ru(II) and two 4-substituted pyridines (4-R-py) to form [Ru(1)(4-R-py)2](PF6)2 where R = CF3, CH3, and Me2N. With [Ru(bpy)2Cl2], the dinuclear complex [(bpy)2Ru(1)Ru(bpy)2](PF6)4 was formed (bpy = 2,2'-bipyridine). Ligand 8 afforded the homoleptic Ru(II) complex [Ru(8)2](PF6)2, as well as the heteroleptic complex [Ru(8)(tpy)](PF6)2 (tpy = 2,2';6,2'-terpyridine). The ligands and complexes were characterized by their NMR and IR spectra, as well as an X-ray structure determination of [Ru(1)(4-CH3-py)2](PF6)2. Electrochemical analysis indicated metal-based oxidation and ligand-based reduction that was consistent with results from electronic absorption spectra. The complexes [Ru(1)(4-R-py)2](PF6)2 were sensitive to the 4-substituent on the axial pyridine: electron donor groups facilitated the oxidation while electron-withdrawing groups impeded it.  相似文献   

17.
The series of complexes [Ru(bpy)(3-n)(btz)(n)][PF(6)](2) (bpy = 2,2'-bipyridyl, btz = 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl, 2n = 1, 3n = 2, 4n = 3) have been prepared and characterised, and the photophysical and electronic effects imparted by the btz ligand were investigated. Complexes 2 and 3 exhibit MLCT absorption bands at 425 and 446 nm respectively showing a progressive blue-shift in the absorption on increasing the btz ligand content when compared to [Ru(bpy)(3)][Cl](2) (1). Complex 4 exhibits a heavily blue-shifted absorption spectrum with respect to those of 1-3, indicating that the LUMO of the latter are bpy-centred with little or no btz contribution whereas that of 4 is necessarily btz-centred. DFT calculations on analogous complexes 1'-4' (in which the benzyl substituents are replaced by methyl) show that the HOMO-LUMO gap increases by 0.3 eV from 1'-3' through destabilisation of the LUMO with respect to the HOMO. The HOMO-LUMO gap of 4' increases by 0.98 eV compared to that of 3' due to significant destabilisation of the LUMO. Examination of TDDFT data show that the S(1) states of 1'-3' are (1)MLCT in character whereas that of 4' is (1)MC. The optimisation of the T(1) state of 4' leads to the elongation of two mutually trans Ru-N bonds to yield [Ru(κ(2)-btz)(κ(1)-btz)(2)](2+), confirming the (3)MC character. Thus, replacement of bpy by btz leads to a fundamental change in the ordering of excited states such that the nature of the lowest energy excited state changes from MLCT in nature to MC.  相似文献   

18.
A series of N-alkylated derivatives [RuL(2)][PF(6)](4) has been prepared from [Ru(pytpy)(2)][PF(6)](2) (N-alkyl substituent = 4-cyanobenzyl, 4-nitrobenzyl, ethyl, cyanomethyl, allyl, octyl). Solution NMR spectroscopic, electrochemical and photophysical properties are reported, along with the single crystal structure of [Ru(4)(2)][PF(6)](4)·H(2)O (4 = 4'-(4-(1-ethylpyridinio))-2,2':6',2'-terpyridine). Anion exchange leads to the water-soluble [RuL(2)][HSO(4)](4) salts (N-alkyl substituent = benzyl, 4-cyanobenzyl, 4-nitrobenzyl, ethyl, cyanomethyl, allyl, octyl) and the NMR spectroscopic signatures of pairs of hexafluoridophosphate and hydrogensulfate salts are compared. The change in anion has little effect on the energies of absorptions in the electronic spectra, although for all complexes, decreases in extinction coefficients are observed. The emission spectra and lifetimes for the hexafluoridophosphate and hydrogensulfate salts show similar trends; all exhibit an emission close to 720-730 nm (λ(ex) = 510 nm). For a given ligand, L, the emission lifetime decreases on going from [RuL(2)][PF(6)](4) to [RuL(2)][HSO(4)](4). However, trends are the same for both salts, i.e. the longest lived emitters are observed for N-ethyl, N-octyl and N-benzyl derivatives, and the shortest lived emitters are those containing cyano or nitro groups. Significantly, in the absorption spectra of the complexes, there is little variation in the energy of the MLCT band, suggesting that the character of the ligand orbital involved in the transition contains no character from the N-substituent. We have addressed this by carrying out a complementary DFT and TD-DFT study. Calculated absorption spectra predict a red shift in λ(max) on going from [Ru(pytpy)(2)](2+) to [RuL(2)](4+), and little variation in λ(max) within the series of [RuL(2)](4+) complexes; these results agree with experimental observations. Analysis of the compositions of the MOs involved in the MLCT transitions explain the experimental observations, showing that there is no contribution from orbitals on the N-alkyl substituents, consistent with the fact that the nature of the N-substituents has little influence on the energy of the MLCT band. The theoretical results also reveal satisfactory agreement between calculated and crystallographic data for [Ru(1)(2)](4+) (1 = 4'-(4-(1-benzylpyridinio))-2,2':6',2'-terpyridine) and [Ru(4)(2)](4+).  相似文献   

19.
Ruthenium nitrosyl complexes containing the Kl?ui's oxgyen tripodal ligand L(OEt)(-) ([CpCo{P(O)(OEt)(2)}(3)](-) where Cp = η(5)-C(5)H(5)) were synthesized and their photolysis studied. The treatment of [Ru(N^N)(NO)Cl(3)] with [AgL(OEt)] and Ag(OTf) afforded [L(OEt)Ru(N^N)(NO)][OTf](2) where N^N = 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) (2·[OTf](2)), 2,2'-bipyridyl (bpy) (3·[OTf](2)), N,N,N'N'-tetramethylethylenediamine (4·[OTf](2)). Anion metathesis of 3·[OTf](2) with HPF(6) and HBF(4) gave 3·[PF(6)](2) and 3·[BF(4)](2), respectively. Similarly, the PF(6)(-) salt 4·[PF(6)](2) was prepared by the reaction of 4·[OTf](2) with HPF(6). The irradiation of [L(OEt)Ru(NO)Cl(2)] (1) with UV light in CH(2)Cl(2)-MeCN and tetrahydrofuran (thf)-H(2)O afforded [L(OEt)RuCl(2)(MeCN)] (5) and the chloro-bridged dimer [L(OEt)RuCl](2)(μ-Cl)(2) (6), respectively. The photolysis of complex [2][OTf](2) in MeCN gave [L(OEt)Ru(dtbpy)(MeCN)][OTf](2) (7). Refluxing complex 5 with RNH(2) in thf gave [L(OEt)RuCl(2)(NH(2)R)] (R = tBu (8), p-tol (9), Ph (10)). The oxidation of complex 6 with PhICl(2) gave [L(OEt)RuCl(3)] (11), whereas the reduction of complex 6 with Zn and NH(4)PF(6) in MeCN yielded [L(OEt)Ru(MeCN)(3)][PF(6)] (12). The reaction of 3·[BF(4)](2) with benzylamine afforded the μ-dinitrogen complex [{L(OEt)Ru(bpy)}(2)(μ-N(2))][BF(4)](2) (13) that was oxidized by [Cp(2)Fe]PF(6) to a mixed valence Ru(II,III) species. The formal potentials of the RuL(OEt) complexes have been determined by cyclic voltammetry. The structures of complexes 5,6,10,11 and 13 have been established by X-ray crystallography.  相似文献   

20.
[Ru(bpy)(2)(Mebpy-COOH)](PF(6))(2).3H(2)O (1), [Ru(phen)(2)(Mebpy-COOH)](ClO(4))(2).5H(2)O (2), [Ru(dppz)(2)(Mebpy-COOH)]Cl(2).9H(2)O (3), and [Ru(bpy)(dppz)(Mebpy-COOH)](PF(6))(2).5H(2)O (4) (bpy = 2,2'-bipyridine, Mebpy-COOH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid, phen = 1,10-phenanthroline, dppz = dipyrido[3,2,-a;2',3-c]phenazine) have been synthesized and characterized spectroscopically and by microanalysis. The [Ru(Mebpy-COOH)(CO)(2)Cl(2)].H(2)O intermediate was prepared by reaction of the monocarboxylic acid ligand, Mebpy-COOH, with [Ru(CO)(2)Cl(2)](n), and the product was then reacted with either bpy, phen, or dppz in the presence of an excess of trimethylamine-N-oxide (Me(3)NO), as the decarbonylation agent, to generate 1, 2, and 3, respectively. For compound 4, [Ru(bpy)(CO)Cl(2)](2) was reacted with Mebpy-COOH to yield [Ru(bpy)(Mebpy-COOH)(CO)Cl](PF(6)).H(2)O as a mixture of two main geometric isomers. Chemical decarbonylation in the presence of dppz gave 4 also as a mixture of two isomers. Electrochemical and spectrophotometric studies indicated that complexes 1 and 2 were present as a mixture of protonated and deprotonated forms in acetonitrile solution because of water of solvation in the isolated solid products. The X-ray crystal structure determination on crystals of [Ru(bpy)2(MebpyCOO)][Ru(bpy)(2)(MebpyCOOH)](3)(PF(6))(7), 1a, and [Ru(phen)(2)(MebpyCOO)](ClO(4)).6H(2)O, 2a, obtained from solutions of 1 and 2, respectively, revealed that 1a consisted of a mixture of protonated and deprotonated forms of the complex in a 1:3 ratio and that 2a consisted of the deprotonated derivative of 2. A distorted octahedral geometry for the Ru(II) centers was found for both complexes. Upon excitation at 450 nm, MeCN solutions of the protonated complexes 1-4 were found to exhibit emission bands in the 635-655 nm range, whereas the corresponding emission maxima of their deprotonated forms were observed at lower wavelengths. Protonation/deprotonation effects were also observed in the luminescence and electrochemical behavior of complexes 1-4. Comprehensive electrochemical studies in acetonitrile show that the ruthenium centers on 1, 2, 3, and 4 are oxidized from Ru(II) to Ru(III) with reversible potentials at 917, 929, 1052, and 1005 mV vs Fc(0/+) (Fc = ferrocene), respectively. Complexes 1 and 2 also exhibit an irreversible oxidation process in acetonitrile, and all compounds undergo ligand-based reduction processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号