首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hypocrellin A, from Hypocrella bambusae, is a novel photosensitizer of high singlet oxygen quantum yield for photodynamic therapy (PDT). Tissue distributions were studied in tumor-bearing mice as a function of time following administration. The tumor model was S-180 sarcoma transplanted into one hind leg of male Kunming mice; hypocrellin A (HA) was delivered to the mice by intravenous injection of 5 mg/kg of body weight as a suspension either as a unilamellar liposome or in dimethyl sulfoxide (DMSO)-solubilized saline. The HA was isolated from several tissues and organs, as well as tumors and peritumoral muscles and skin. Quantitation was performed by a high-performance liquid chromatographic technique with detection that utilizes the native fluorescence of HA. Independent of the delivery system, the dye was retained in tumors at higher concentrations than in normal tissues, except for kidney, liver, lung and spleen. The dye retention in tumors was high and was vehicle dependent. For the liposomal system, the maximal accumulation in tumor and maximal ratios of dye in tumor versus peritumoral muscle and skin occurred 12 h postinjection; for the DMSO saline system, the maximal ratio occurred earlier, 6 h postadministration. Liposomal delivery improved the selective accumulation of the dye in tumor with higher maximal levels in tumor and higher ratios of tumor-to-muscle and tumor-to-skin. Levels of dye were very low or not detectable in the brain. The PDT efficacy of HA in the liposome and DMSO saline systems was determined by evaluating the tumor volume regression percent. The PDT efficacy of HA in liposomes was highest when light treatment was performed at 12 h postinjection, consistent with the highest retention of HA in tumors. Similarly, the maximal PDT efficacy in DMSO saline was attained at 6 h postinjection, the highest HA retention point in tumor. Moreover, the peak PDT efficacy of HA in liposomes was much higher than that of HA in DMSO saline and even hematoporphyrin monomethylether.  相似文献   

2.
A targeting strategy based on the selective enzyme-mediated activation of polymeric photosensitizer prodrugs (PPP) within pathological tissue has led to the development of agents with the dual ability to detect and treat cancer. Herein, a detailed study of a simple model system for these prodrugs is described. We prepared "first-generation" PPP by directly tethering the photosensitizer (PS) pheophorbide a to poly-(L)-lysine via epsilon amide links and observed that by increasing the number of PS on a polymer chain, energy transfer between PS units improved leading to better quenching efficiency. Fragmentation of the PPP backbone by trypsin digestion gave rise to a pronounced fluorescence increase and to more efficient generation of reactive oxygen species upon light irradiation. In vitro tests using the T-24 bladder carcinoma cell line and ex vivo experiments using mouse intestines illustrated the remarkable and selective ability of these PPP to fluoresce and induce phototoxicity upon enzymatic activation. This work elucidated the basic physicochemical parameters, such as water solubility and quenching/activation behavior, required for the future elaboration of more adaptable "second-generation" PPP, in which the PS is tethered to a proteolytically stable polymer backbone via enzyme-specific peptide linkers. This polymer architecture offers great flexibility to tailor make the PPP to target any pathological tissue known to over-express a specific enzyme.  相似文献   

3.
The complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy. This study was aimed to synthesize a polycationic chitosan-conjugated rose bengal (CSRB) photosensitizer and test its antibiofilm efficacy on Enterococcus faecalis (gram positive) and Pseudomonas aeruginosa (gram negative) using photodynamic therapy. During experiments, CSRB was tested along with an anionic photosensitizer rose bengal (RB) and a cationic photosensitizer methylene blue (MB) for uptake and killing efficacy on 7-day-old E. faecalis and P. aeruginosa biofilms. Microbiological culture based analysis was used to analyze the cell viability, while laser scanning confocal microscopy (LSCM) was used to examine the structure of biofilm. The synthesized CSRB showed absorbance spectrum similar to the RB. The concentration of CSRB uptaken by both the bacterial biofilms was significantly higher than that of RB and MB (P < 0.05). Photoactivation resulted in significantly higher elimination of both bacterial biofilms sensitized with CSRB than RB and MB. The structure of biofilm under LSCM was found to be disrupted following CSRB treatment. The present study highlighted the importance of inherent cell membrane permeabilizing effect of chitosan and increased cell/biofilm uptake of conjugated photosensitizer to produce significant antibiofilm efficacy during photodynamic therapy.  相似文献   

4.
We report a new class of photosensitizer drug networks that can home into mitochondria and provide geospatial phototoxicity for tumors. We take advantage of the cleavable chemical network between the photosensitizer drug and poly(ethylene glycol), and find a significant increase in the efficiency of the multimeric drug network in mitochondria uptake and tumor inhibition.  相似文献   

5.
Photodynamic therapy (PDT) is emerging as a potential therapeutic modality in the clinical management of cutaneous leishmaniasis (CL). In order to establish a rationale for effective PDT of CL, we investigated the impact of the molecular charge and structure of photosensitizers on the parasitic phototoxic response. Two photosensitizers from the benzophenoxazine family that bear an overall cationic charge and two anionic porphyrinoid molecules were evaluated. The photodynamic activity of the photosensitizers decreases in the following order: EtNBSe > EtNBS > BpD > PpIX. The studies suggest that compared to hydrophobic anionic photosensitizers, the hydrophilic cationic benzophenoxazine analogs provide high effectiveness of PDT possibly due to (1) their strong attraction to the negatively charged parasitic membrane, (2) their hydrophilicity, (3) their high singlet oxygen quantum yield, and (4) their efficacy in targeting intracellular organelles.  相似文献   

6.
Metal phthalocyanine as photosensitizer for photodynamic therapy (PDT)   总被引:5,自引:0,他引:5  
A series of sulfonated (S) phthalimidomethyl (P) zinc phthalocyanines (Pc) was synthesized in a reaction, in which both kinds of substituents were introduced to ZnPc simultaneously. The products were separated by HPLC. The five different fractions obtained were further purified by a membrane separation method, and then characterized by UV/Vis, IR, element analysis and the abilities to generate singlet oxygen upon irradiation by light as well as a preliminary determination ofin vitro antitumor activities. The results show that one of the five separating parts with formula of ZnPcS2P2 exhibited rather good PDT activity. The compound was further characterized by NMR, MS and thermal analysis. Studies onin vivo antitumor activities of ZnPcS2P2 as photosensitizer show that its inhibitory rate was up to 89.8% and 90.8% for S180 and U14 solid tumors transplanted in mice respectively when the dosage of drug was 2 mg/kg and the dosage of laser light with 670 nm wavelength was 72 J/cm2. Several structural factors influenced on the PDT activities were discussed.  相似文献   

7.
A new hypocrellin B (HB) derivative bearing a bispyrrolecarboxamide-containing side chain was synthesized, which presents improved absorptivity in phototherapeufic window than HB and affinity feature towards dsDNA.  相似文献   

8.
Photodynamic therapy (PDT) regimens that conserve tumor oxygenation are typically more efficacious, but require longer treatment times. This makes them clinically unfavorable. In this report, the inverse pairing of fluence rate and photosensitizer dose is investigated as a means of controlling oxygen depletion and benefiting therapeutic response to PDT under conditions of constant treatment time. Studies were performed for Photofrin-PDT of radiation-induced fibrosarcoma tumors over fluence rate and drug dose ranges of 25-225 mW cm(-2) and 2.5-10 mg kg(-1), respectively, for 30 min of treatment. Tumor response was similar among all inverse regimens tested, and, in general, tumor hemoglobin oxygen saturation (SO2) was well conserved during PDT, although the highest fluence rate regimen (225 mWx2.5 mg) did lead to a modest but significant reduction in SO2. Regardless, significant direct tumor cell kill (>1 log) was detected during 225 mWx2.5 mg PDT, and minimal normal tissue toxicity was found. PDT effect on tumor oxygenation was highly associated with tumor response at 225 mWx2.5 mg, as well as in all other regimens tested. These data suggest that high fluence rate PDT can be carried out under oxygen-conserving, efficacious conditions at low photosensitizer dose. Clinical confirmation and application of these results will be possible through use of minimally invasive oxygen and photosensitizer monitoring technologies, which are currently under development.  相似文献   

9.
Abstract— The photoproperties of derivatized silicon naphthalocyanine have been investigated in order to assess its potential as a photosensitizer for photo-dynamic therapy. Absorption, fluorescence, phosphorescence and triplet absorption spectra have been measured. Oxygen quenching of the triplet state formed singlet oxygen in significant yields.  相似文献   

10.
We have synthesized a novel, two-photon-absorbing photosensitizer for two-photon-absorption photodynamic therapy (2PA-PDT). The molecule is a butadiyne-bridged porphyrin dimer terminated with two water-soluble porphyrin monomers connected through Zn-imidazolyl self-assembly and covalently linked through olefin metathesis. It has an effective two-photon-absorption (2PA) cross-section value, sigma((2)), of 33 000+/-4600 GM with 5-ns pulses at 890 nm measured by using the open-aperture Z-scan technique. The compound was found to generate singlet oxygen, cytotoxic for tumor cells in photodynamic therapy (PDT), under 2PA conditions by conducting photobleaching experiments with anthracene-9,10-dipropionic acid sodium salt (ADPA).  相似文献   

11.
The tissue photosensitizer protoporphyrin IX (PpIX) is an immediate precursor of heme in the biosynthetic pathway for heme. In certain types of cells and tissues, the rate of synthesis of PpIX is determined by the rate of synthesis of 5-aminolevulinic acid (ALA), which in turn is regulated via a feedback control mechanism governed by the concentration of free heme. The presence of exogenous ALA bypasses the feedback control, and thus may induce the intracellular accumulation of photosensitizing concentrations of PpIX. However, this occurs only in certain types of cells and tissues. The resulting tissue-specific photosensitization provides a basis for using ALA-induced PpIX for photodynamic therapy. The topical application of ALA to certain malignant and non-malignant lesions of the skin can induce a clinically useful degree of lesion-specific photosensitization. Superficial basal cell carcinomas showed a complete response rate of approximately 79% following a single exposure to light. Recent preclinical studies in experimental animals and human volunteers indicate that ALA can induce a localized tissue-specific photosensitization if administered by intradermal injection. A generalized but still quite tissue-specific photosensitization may be induced if ALA is administered by either subcutaneous or intraperitoneal injection or by mouth. This opens the possibility of using ALA-induced PpIX to treat tumors that are too thick or that lie too deep to be accessible to either topical or locally injected ALA.  相似文献   

12.
Conventional anti-Stokes materials-involved deep photodynamic therapy (dPDT) requires much high-intensity irradiance due to low photosensitization efficiency.Herein,we proposed a"booster effector"approach to construct highly efficient hot band absorption phototherapeutics for low/biosafety power anti-Stokes light-triggered d PDT.Se,as"booster effector",was introduced into hot band absorption luminophores (HBAs),which not only significantly facilitated intersystem crossing,but also simultaneously...  相似文献   

13.
The peripheral benzodiazepine receptor (PBR) is an 18 kDa protein of the outer mitochondrial membrane that interacts with the voltage-dependent anion channel and may participate in formation of the permeability transition pore. The physiological role of PBR is reflected in the high-affinity binding of endogenous ligands that are metabolites of both cholesterol and heme. Certain porphyrin precursors of heme can be photosensitizers for photodynamic therapy (PDT), which depends on visible light activation of porphyrin-related macrocycles. Because the apparent binding affinity of a series of porphyrin analogs for PBR paralleled their ability to photoinactivate cells, PBR has been proposed as the molecular target for porphyrin-derived photocytotoxicity. The phthalocyanine (Pc) photosensitizer Pc 4 accumulates in mitochondria and structurally resembles porphyrins. Therefore, we tested the relevance of PBR binding on Pc 4-PDT. Binding affinity was measured by competition with 3H-PK11195, a high-affinity ligand of PBR, for binding to rat kidney mitochondria (RKM) or intact Chinese hamster ovary (CHO) cells. To assess the binding of the Pc directly, we synthesized 14C-labeled Pc 4 and found that whereas Pc 4 was a competitive inhibitor of 3H-PK11195 binding to the PBR, PK11195 did not inhibit the binding of 14C-Pc 4 to RKM. Further, 14C-Pc 4 binding to RKM showed no evidence of saturation up to 10 microM. Finally, when Pc 4-loaded CHO cells were exposed to activating red light, apoptosis was induced; Pc 4-PDT was less effective in causing apoptosis in a companion cell line overexpressing the antiapoptotic protein Bcl-2. For both cell lines, PK11195 inhibited PDT-induced apoptosis; however, the inhibition was transient and did not extend to overall cell death, as determined by clonogenic assay. The results demonstrate (1) the presence of low-affinity binding sites for Pc 4 on PBR; (2) the presence of multiple binding sites for Pc 4 in RKM and CHO cells other than those that influence PK11195 binding; and (3) the ability of high supersaturating levels of PK11195 to transiently inhibit apoptosis initiated by Pc 4-PDT, with less influence on overall cell killing. We conclude that the binding of Pc 4 to PBR is less relevant to the photocytotoxicity of Pc 4-PDT than are other mitochondrial events, such as photodamage to Bcl-2 and that the observed inhibition of Pc 4-PDT-induced apoptosis by PK11195 likely occurs through a mechanism independent of PBR.  相似文献   

14.
Photodynamic therapy (PDT) uses light to activate a photosensitizer to achieve localized tumor control. In this study, PDT mediated by a second-generation photosensitizer, palladium-bacteriopheophorbide WST09 (Tookad) was investigated as an alternative therapy for prostate cancer. Normal canine prostate was used as the animal model. PDT was performed by irradiating the surgically exposed prostate superficially or interstitially at 763 nm to different total fluences (100 or 200 J/cm2; 50, 100 or 200 J/cm) at 5 or 15 min after intravenous administration of the drug (2 mg/kg). Areas on the bladder and colon were also irradiated. The local light fluence rate and temperature were monitored by interstitial probes in the prostate. All animals recovered well, without urethral complications. During the 1 week to 3 month post-treatment period, the prostates were harvested for histopathological examination. The PDT-induced lesions showed uniform hemorrhagic necrosis and atrophy, were well delineated from the adjacent normal tissue and increased linearly in diameter with the logarithm of the delivered light fluence. A maximum PDT-induced lesion size of over 3 cm diameter could be achieved with a single interstitial treatment. There was no damage to the bladder or rectum caused by scattered light from the prostate. The bladder and rectum were also directly irradiated with PDT. At 80 J/cm2, a full-depth necrosis was observed but resulted in no perforation. At 40 J/cm2, PDT produced minimal damage to the bladder or rectum. On the basis of optical dosimetry, we have estimated that 20 J/cm2 is the fluence required to produce prostatic necrosis. Thus, the normal structure adjacent to the prostate can be safely preserved with careful dosimetry. At therapeutic PDT levels, there was no structural or functional urethral damage even when the urethra was within the treated region. Hence, Tookad-PDT appears to be a promising candidate for prostate ablation in patients with recurrent, or possibly even primary, prostate cancer.  相似文献   

15.
Photodynamic therapy (PDT) efficacy is a complex function of tissue sensitivity, photosensitizer (PS) uptake, tissue oxygen concentration, delivered light dose and some other parameters. To better understand the mechanisms and optimization of PDT treatment, we assessed two techniques for quantifying tissue PS concentration and two methods for quantifying pathological tumor damage. The two methods used to determine tissue PS concentration kinetic were in vivo fluorescence probe and ex vivo chemical extraction. Both methods show that the highest tumor to normal tissue PS uptake ratio appears 4 h after PS administration. Two different histopathologic techniques were used to quantify tumor and normal tissue damage. A planimetry assessment of regional tumor necrosis demonstrated a linear relationship with increasing light dose. However, in large murine tumors this finding was complicated by the presence of significant spontaneous necrosis. A second method (densitometry) assessed cell death by nuclear size and density. With some exceptions the densitometry method generally supported the planimetry results. Although the densitometry method is potentially more accurate, it has greater potential subjectivity. Finally, our research suggests that the tools or methods we are studying for quantifying PS levels and tissue damage are necessary for the understanding of PDT effect and therapeutic ratio in experimental in vivo tumor research.  相似文献   

16.
Hypocrellin B (HB), a lipid-soluble natural pigment of perylenequinone derivative, is considered as potential photosensitizer for photodynamic therapy. Liposomes loaded with HB can constitute a simple model system, appropriate for better understanding the photodynamic action of HB in vivo. The steady-state absorption and emission spectra, quantum yield and lifetime of fluorescence of HB incorporated into egg L-a-phosphatidyl-choline (EPC) liposome were examined. The photochemical properties (Type I and/or Type II) of HB have also been studied in aqueous dispersions of small unilamellar liposomes of EPC using electron paramagnetic resonance and spectrophotometric methods, respectively. The quantum yield of 1O2 generated by HB is ca 0.76 in chloroform solution and it did not change upon the incorporation of HB into liposomes of EPC. The superoxide anion radical was generated by the electron transfer from the anion radical of HB (HB.-) to oxygen. The disproportionation of O2.- can generate H2O2 and ultimately the highly reactive .OH via the Fenton reaction. It could be that the disproportionation proceeded too fast, so we could not detect O2.- directly in aqueous dispersions of liposome EPC. Moreover, the self-sensitized photooxygenation of HB embedded in liposomes was studied, and almost fully (87%) inhibiting this reaction of HB by p-benzoquinone (as the quencher of O2.-) in aqueous dispersion of liposome EPC indicated that the radical mechanism (Type I) might be mainly involved in this oxygenation. All these findings suggested that the photodynamic action of HB proceeded via both Type-I and -II mechanisms, but Type-I mechanism might play a more important role in the aqueous dispersion.  相似文献   

17.
Three new hypocrellin derivatives, amino- or amino acid-substituted on the side ring of hypocrellin B (HB), were synthesized by the reactions of HB with 3-methoxypropylamine, 6-aminohexanoic acid and gamma-amino-n-butyric acid, respectively. The structures of these compounds were characterized with proton nuclear magnetic resonance spectra, infrared spectra and mass spectra. The UV-visible absorption spectra, singlet oxygen-generating quantum yield and amphiphilicities of hypocrellin derivatives were measured and compared with HB, the parent compound. These derivatives showed strong absorption in the domain of the phototherapeutic window (600-900 nm) and improved amphiphilicity. HB and the derivatives were preliminarily tested for their photodynamic effects on human oral cavity epithelial carcinoma KB cell line in vitro. Two amino acid-substituted hypocrellins showed phototoxicity to the KB cell line. At an inhibitory dosage of 50% killing only 0.51 mumol L-1 compound 3 (or 0.88 mumol L-1 compound 2) and 0.5 J cm-2 irradiation were required. The hypocrellins exhibited some dark toxicity to the KB cell line. HB and amino acid-substituted hypocrellins showed lower dark toxicity to the KB cell line than amino-substituted hypocrellins in the assessment of cell survival.  相似文献   

18.
Tetra(trifluoroethoxyl) zinc phthalocyanine, which could be dissolved in most organic solvents, was synthesized. The compound displays a good photocytotoxicity on myeloma cells and Chinese hamster ovary cells in vitro in the presence of the emulsifying agent F68.  相似文献   

19.
Cancer‐selective internalization has a great potential for reducing the side effect of photodynamic therapy. Recently, various cancer‐targeted delivery carriers have provided enhanced cancer targeting efficiency. Despite significant advancements in cancer‐targeted carriers, side effects are still present because of non‐selective cellular uptake that occurs in the heterogeneous cancer environment. In this paper, we designed two types of cancer‐selectable two arm hydrophilic photosensitizer (CTAHP2K and CTAHP4K) with silicon‐tetrapyrazinoporphyrazines (ST), polyethylene glycol and the cancer‐specific ligand for cancer‐selective theranostics. The synthesized CTAHP4K exhibits a folate receptor‐mediated cancer‐selective cellular uptake and induces cancer‐selective death. The folate receptor‐mediated cancer‐selective internalization of CTAHP4K was confirmed by competitive interaction with vitamin B in MDA‐MB‐231 human breast carcinoma. The cancer‐selective cytotoxicity of CTAHP4K was confirmed using a 670‐nm laser to irradiate Chang Liver cells and MDA‐MB‐231 cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Nowadays multi-drug resistant microorganisms is a serious public health problem worldwide. To overcome it, new antimicrobial strategies have been developed. Among them, antimicrobial photodynamic therapy is an efficient tool against various micro-organisms in different medical and healthcare fields. The antimicrobial photodynamic protocol is based on the interaction of a photosensitizer, molecular oxygen, and an appropriate light source. Herein, we described the main physical and chemical proprieties of curcumin, an useful natural photosensitizer, including its degradation pathways, analytical methods for quantification, extraction method, synthetic methodologies, and pharmaceutical formulations used. Moreover, a comprehensive review of the past 10 years (2010−2019) concerning the application of curcumin as photosensitizer against microorganisms is described and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号