首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to develop a new deproteinization method to extract amoxicillin from human plasma and evaluate the inter‐ethnic variation of amoxicillin pharmacokinetics in healthy Malay volunteers. A single‐dose, randomized, fasting, two‐period, two‐treatment, two‐sequence crossover, open‐label bioequivalence study was conducted in 18 healthy Malay adult male volunteers, with one week washout period. The drug concentration in the sample was analyzed using high‐performance liquid chromatography (UV–vis HPLC). The mean (standard deviation) pharmacokinetic parameter results of Moxilen® were: peak concentration (Cmax), 6.72 (1.56) µg/mL; area under the concentration–time graph (AUC0–8), 17.79 (4.29) µg/mL h; AUC0–∞, 18.84 (4.62) µg/mL h. Those of YSP Amoxicillin® capsule were: Cmax, 6.69 (1.44) µg/mL; AUC0–8, 18.69 (3.78) µg/mL h; AUC00–∞, 19.95 (3.81) µg/mL h. The 90% confidence intervals for the logarithmic transformed Cmax, AUC0–8 and AUC0–∞ of Moxilen® vs YSP Amoxicillin® capsule was between 0.80 and 1.25. Both Cmax and AUC met the predetermined criteria for assuming bioequivalence. Both formulations were well tolerated. The results showed significant inter‐ethnicity variation in pharmacokinetics of amoxicillin. The Cmax and AUC of amoxicillin in Malay population were slightly lower compared with other populations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The thermal reaction of Ru3(CO)12 with ethacrynic acid, 4‐[bis(2‐chlorethyl)amino]benzenebutanoic acid (chlorambucil), or 4‐phenylbutyric acid in refluxing solvents, followed by addition of two‐electron donor ligands (L), gives the diruthenium complexes Ru2(CO)4(O2CR)2L2 ( 1 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = C5H5N; 2 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = PPh3; 3 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = C5H5N; 4 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = PPh3; 5 : R = C3H6‐C6H5, L = C5H5N; 6 : R = C3H6‐C6H5, L = PPh3). The single‐crystal structure analyses of 2 , 3 , 5 and 6 reveal a dinuclear Ru2(CO)4 sawhorse structure, the diruthenium backbone being bridged by the carboxylato ligands, while the two L ligands occupy the axial positions of the diruthenium unit.  相似文献   

3.
We aimed to determine the pharmacokinetics and safety of three single oral doses (5, 10 and 15 mg) of ivabradine hemisulfate sustained‐release tablets in healthy Chinese volunteers. A total of 12 volunteers (six males and six females) were randomized to receive a single oral dose of ivabradine hemisulfate sustained‐release tablets 5, 10 or 15 mg, with a 1‐week washout between periods. Blood samples were collected at regular intervals from 0 to 48 h after drug administration, and the concentrations of ivabradine and N‐desmethyl ivabradine were determined by HPLC–tandem mass spectrometry. Pharmacokinetic parameters were estimated by non‐compartmental analysis. After administering single doses of 5, 10 and 15 mg, the mean maximum concentration (Cmax) levels of ivabradine were 4.36, 7.29 and 12.62 ng/mL, and the mean area under the curve from time 0 to 48 h (AUC0–48) values were 55.66, 101.16 and 182.09 h·ng/mL, respectively. The mean Cmax levels of N‐desmethyl ivabradine were 1.05, 2.03 and 3.16 ng/mL, and the mean AUC0–48 values were 20.61, 39.44 and 65.72 h·ng/mL, respectively. The median time of maximum concentration (Tmax) levels of ivabradine and N‐desmethyl ivabradine were 5 h for all three doses tested. The pharmacokinetic properties of ivabradine hemisulfate sustained‐release tablets were linear at doses from 5 to 15 mg. Ivabradine hemisulfate sustained‐release tablet appears to be well tolerated in these healthy volunteers.  相似文献   

4.
To assess the bioequivalence of two zolpidem hemitartrate formulations in 30 healthy volunteers. Plasma samples were obtained over a 24 h period. Plasma concentrations of zolpidem were analyzed by liquid chromatography coupled to tandem mass spectrometry with positive ion electrospray ionization using multiple reaction monitoring. Values of peak concentration (Cmax), area under curve (AUC), half-life, elimination constant, volume of distribution and clearance showed statistically significant differences when comparing women (604.34 ng h/ml, 127.36 ng/ml, 4.4 h, 0.18 1/h, 50.56 L and 8.55 L/h, respectively) and men (276.1 ng h/ml, 70.9 ng/ml, 3.3 h, 0.26 1/h, 91.42 L and 24.34 L/h, respectively), receiving the same dose (5 mg), respectively. The geometric means with corresponding 90% confidence interval for Test/Reference percentage ratios were 99.73% (CI 93.69–106.16) for Cmax, 97.44% (90% CI = 91.85–103.37%) for area under curve of plasma concentration until the last concentration observed (AUClast) and 98.30% (90% CI = 92.48–104.49) for the area under curve between the first sample (pre-dosage) and infinity (AUC0–inf). Since the 90% CI for AUClast, AUC0–inf and Cmax ratios were within the 80–125% interval proposed by the US Food and Drug Administration, it was concluded that zolpidem hemitartrate formulation (5 mg orodispersible tablet) is bioequivalent to the zolpidem hemitartrate formulation (Patz SL 5 mg sublingual tablet) with regard to both the rate and the extent of absorption. A new formulation of zolpidem 2.5 mg may be useful in women for the same clinical benefits as the 5 mg formulation in men.  相似文献   

5.
A rapid and sensitive gas chromatography with mass spectrometry method for the determination of venlafaxine in rat plasma has been developed and applied to a drug–drug interaction study of fluoxetine on pharmacokinetics of venlafaxine in rats. Rat plasma was spiked with 2% aqueous ammonia before subjected to preactivated C18 solid‐phase extraction columns and eluted with methanol. No endogenous interferences were observed under optimal condition. The calibration curve was linear (R 2 = 0.9994) in the range of 10–1000 ng/mL. The quantification limit of venlafaxine in rat plasma was 10 ng/mL. The accuracy was in the range of 85–110%, and the extraction recovery was no less than 50%. Both the intra‐ and interday precision were 5.0–10.7%. The concentration–time curve showed that plasma concentrations of the coadministration group (group B) were higher than that of single dose group (group A). Both values of C max (0.069 mg/L) and AUC0→∞ (0.291 mg h/L) in group B were statistically greater than that of C max (0.046 mg/L) and AUC0→∞ (0.181 mg·h/L) in group A (< 0.05). The results indicated that a significant effect of fluoxetine was shown on the pharmacokinetics of venlafaxine, suggesting that drug–drug interactions are of concern for the treatment of depression with the combined use of venlafaxine and fluoxetine.  相似文献   

6.
A simple, rapid, specific and reliable high‐performance liquid chromatographic assay of meloxicam in human plasma has been developed using a C18 reversed‐phase analytical column. Reversed‐phase chromatography was conducted using a mobile phase of 0.02 potassium dihydrogen phosphate (adjusted to pH 2.7 with phosphoric acid)–acetonitrile–triethylamine (35:65:0.05, v/v) with UV detection at 354 nm. The drug in human plasma was deproteinized using a combination of methanol and chloroform. This method is simple, rapid and consistent with a high recovery of meloxicam in human plasma ranging from 93.29 to 111.09%. Regression analysis for the calibration plot for plasma standards obtained for the drug concentrations between (25–4000) ng/mL indicated excellent linearity (r ≥ 0.9997). The proposed method was applied to study the bioequivalence between Mobic (original) and Melocam (generic) products. The study was conducted on using two tablets (4 × 7.5 mg) of each of the commercial product and the reference standard in a two‐way open randomized crossover design involving 20 volunteers. Area under the concentration–time curve, peak concentration (Cmax) and time to reach Cmax were 72,868.61 ng h/mL, 2133.93 ng/mL and 4.06 h for Mobic, and 78,352.52 ng h/mL, 2525.18 ng/mL and 3.61 h for Melocam. Two Cmax were discovered in the pharmacokinetic profiles which confirm enterohepatic recirculation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A simple LC‐MS/MS method was developed and validated for the estimation of sarpogrelate in 50 µL of rat plasma. The analyte and internal standard (IS) were extracted from rat plasma by acetonitrile precipitation and they were separated on a reversed‐phase C8 column with gradient program. The MS acquisition was performed with multiple reaction monitoring mode using m/z 430.2 to m/z 135.0 for analyte and m/z 448.2 to m/z 285.3 for IS. The calibration curves were linear over the range of 1–1000 ng/mL with the correlation coefficient greater than 0.999. With dilution integrity up to 20‐fold, the upper limit of quantification was extendable up to 15,000 ng/mL. The method was successfully applied to the analysis of rat plasma samples after single dose oral administration of sarpogrelate at 5 mg/kg to rats for the determination of its pharmacokinetics. Following oral administration the maximum mean concentration in plasma (Cmax, 11514 ng/mL) was achieved at 0.25 h (Tmax) and the area under curve (AUC0–24) was 11051 ± 3315 ng h/mL. The half‐life (t1/2) and clearance (Cl) were 2.9 ± 1.1 h and 490 ± 171 mL/h/kg, respectively. We believe that development of a method in rodent plasma would facilitate the ease of adaptability of sarpogrelate in human plasma. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This study describes the development of an analytical methodology based on the use of microchip electrophoresis (ME) devices integrated with capacitively coupled contactless conductivity detection (C4D) for the separation and detection of inorganic anions in post‐blast explosive residues. The best separation condition was achieved using a running buffer composed of 35 mmol/L lactic acid, 10 mmol/L histidine and 0.070 mmol/L cetyl(trimethyl ammonium) bromide. For C4D measurements, the highest sensitivity was obtained applying a 700 kHz sinusoidal wave with excitation voltage of 20 Vpp. The separation of Cl?, NO3?, NO2?, SO42?, ClO4? and ClO3? was performed within ca. 150 s with baseline resolution and efficiencies between 4.4 × 104 and 1.7 × 105 plates/m. The found limits of detection ranged between 2.5 and 9.5 μmol/L. Last, real samples of post‐blast explosive residues were analyzed on the ME‐C4D devices obtaining successfully the determination of Cl?, NO3? and SO42?. The achieved concentration values varied between 12.8–72.5 mg/L for Cl?, 1.7–293.1 mg/L for NO3? and 1.3–201.3 mg/L for SO42?. The data obtained using ME‐C4D devices were in good agreement with the concentrations found by ion chromatography. The approach reported herein has provided short analysis time, instrumental simplicity, good analytical performance and low cost. Furthermore, the ME‐C4D devices emerge as a powerful and portable analytical platform for on‐site analysis demonstrating to be a promising tool for the crime scene investigation.  相似文献   

9.
The ortho‐metallation product of the reaction of (±)‐amphetamine with gold(III) chloride, [D,L‐2‐(2‐aminopropyl)phenyl‐κ2N,C1]dichloridogold(III), [Au(C9H12N)Cl2], and the two salts resulting from crystallization of (+)‐methamphetamine with gold(III) chloride, D‐methyl(1‐phenylpropan‐2‐yl)azanium tetrachloridoaurate(III), (C10H16N)[AuCl4], and of (±)‐ephedrine with gold(III) chloride, D,L‐(1‐hydroxy‐1‐phenylpropan‐2‐yl)(methyl)azanium tetrachloridoaurate(III), (C10H16NO)[AuCl4], have different structures. The first makes a bidentate complex directly with a dichloridogold(III) group, forming a six‐membered ring structure; the second and third each form a salt with [AuCl4] (each has two formula units in the asymmetric unit). The organic components are all members of the same class of stimulants that are prevalent in illicit drug use. These structures are important contributions to the understanding of the microcrystal tests for these drugs that have been employed for well over 100 years.  相似文献   

10.
A series of novel (arylimido)vanadium(V) complexes bearing tridentate salicylaldiminato chelating ligands, V(N‐2,6‐Me2C6H3)Cl2[(O‐2‐tBu‐4‐R‐C6H3)CH?ND] (R = H, D = 2‐CH3O? C6H4 ( 2a ); 2‐CH3S? C6H4 ( 2b ); 2‐Ph2P? C6H4 ( 2c ); 8‐C9H6N (quinoline) ( 2d ); CH2C5H4N ( 2e ); R = tBu, D = 2‐Ph2P? C6H4 ( 2f )), were prepared from V(NAr)Cl3 by reacting with 1.0 equiv of the ligands in the presence of triethylamine in tetrahydrofuran. These complexes were characterized by 1H, 13C, 31P, and 51V NMR spectra and elemental analysis. The structures of 2c and 2f were further confirmed by X‐ray crystallographic analysis. These (arylimido)vanadium(V) complexes are effective catalyst precursors for ethylene polymerization in the presence of Et2AlCl as a cocatalyst and ethyl trichloroacetate as a reactivating agent. Complex 2c with a ? PPh2 group in the sidearm was found to exhibit an exceptional activity up to 133800 kg polyethylene/molV h for ethylene polymerization at 75 °C, which is one of the highest activities displayed by homogeneous vanadium(V) catalysts at high temperature. Moreover, high molecular weight polymers with unimodal molecular weight distribution can be obtained, indicating the single site behavior of these catalysts. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2633‐2642  相似文献   

11.
The influence of active fraction isolated from pods of an indigenous plant, Moringa oleifera (MoAF) was studied on the pharmacokinetic profile of the orally administered frontline anti‐tuberculosis drug rifampicin (20 mg/kg b.w.) in Swiss albino mice. The antibiotic rifampicin alone and in combination with MoAF (0.1 mg/kg b.w.) was administered orally and heparanized blood samples were collected from the orbital plexus of mice for plasma separation at 0, 1, 2, 3, 4 and 5 h, post treatment. Plasma rifampicin concentration, pharmacokinetic parameters and drug metabolizing enzyme (cytochrome P‐450) activity were determined. The pharmacokinetic data revealed that MoAF‐treated animals had significantly increased rifampicin plasma concentration, Cmax, Kel, t½(a), t½(el), Ka and AUC as well as inhibited rifampicin‐induced cytochrome P‐450 activity. In conclusion, the result of this study suggested that the bioavailability‐enhancing property of MoAF may help to lower the dosage level and shorten the treatment course of rifampicin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional.  相似文献   

13.
In this study, we used a self‐contrast method, which excluded the individual difference, to evaluate the inhibitory effect of chrysosplentin (CHR) in the presence or absence of artemisinin (ART) on the P‐glycoprotein (P‐gp) transport activity. A sensitive and rapid UHPLC–MS/MS method was applied for quantification of digoxin, a P‐gp‐specific substrate, in rat plasma. A pharmacokinetic study was carried out: first after an oral administration of digoxin at a dose of 0.09 mg/kg (first period), followed by a 20‐day wash‐out, then after another administration of digoxin (second period). During the second period, test compounds were orally given three times per day for seven consecutive days. Results showed that the t1/2 of digoxin in all the groups had no significant difference between the first and second periods. The AUC0–24, Cmax, tmax, and Clz/F of the negative control and ART alone groups showed no difference. However, the AUC0–24 and Cmax in the CHR alone, CHR–ART (1:2) and verapamil (positive control) groups showed 2.34‐, 3.04‐, 1.79‐, and 1.81‐, 1.99‐, 2.06‐fold increases along with 3.50‐, 3.84‐ and 4.76‐fold decreases for CLz/F, respectively. The tmax in the CHR–ART (1:2) group increased 3.73‐fold. In conclusion, our self‐contrast study suggested that CHR, especially when combined with ART in a ratio of 1:2, inhibited P‐gp activity while ART alone has no effect. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
《Electrophoresis》2018,39(17):2188-2194
This study describes the development of a new analytical method for the separation and detection of cocaine (COC) and its adulterants, or cutting agents, using microchip electrophoresis (ME) devices coupled with capacitively coupled contactless conductivity detection (C4D). All the experiments were carried out using a glass commercial ME device containing two pairs of integrated sensing electrodes. The running buffer composed of 20 mmol/L amino‐2‐(hydroxymethyl) propane‐1,3‐diol and 10 mmol/L 3,4‐dimethoxycinnamic acid provided the best separation conditions for COC and its adulterants with baseline resolution (R > 1.6), separation efficiencies ranging from (2.9 ± 0.1) to (3.2 ± 0.2) × 105 plates/m, and estimated LOD values between 40 and 150 μmol/L. The quantification of COC was successfully performed in four samples seized by the Brazilian Federal Police Department and all predicted values agree with values estimated by the reference method. Some other interfering species were detected in the seized samples during the screening procedure on ME–C4D devices. While lidocaine was detected in sample 3, the presence of levamisole was observed in samples 2 and 4. However, their concentrations were estimated to be below the LOQ. ME–C4D devices have proved to be quite efficient for the identification and quantification of COC with errors lower than 10% when compared to the data obtained by a reference method. The approach herein reported offers great potential to be used for on‐site COC screening in seized samples.  相似文献   

15.
Stable dinuclear transition metal complexes,[(η6‐C6H6)2Ru2(L1)Cl2]2+ ( 1 ), [(η6piPrC6H4Me)2Ru2(L1)Cl2]2+ ( 2 ), [(η6‐C6Me6)2Ru2(L1)Cl2]2+ ( 3 ), [(η6‐C6H6)2Ru2(L2)Cl2]2+ ( 4 ),[(η6piPrC6H4Me)2Ru2(L2)Cl2]2+ ( 5 ), [(η6‐C6Me6)2Ru2(L2)Cl2]2+ ( 6 ), [(η5‐C5Me5)2Rh2(L1)Cl2]2+ ( 7 ), [(η5‐C5Me5)2Ir2(L1)Cl2]2+ ( 8 ),[(η5‐C5Me5)2Rh2(L2)Cl2]2+ ( 9 ), and [(η5‐C5Me5)2Rh2(L2)Cl2]2+ ( 10 ), with the bis‐bidentate ligands 1,3‐bis(di‐2‐pyridylaminomethyl)benzene (L1) and 1,4‐bis(di‐2‐pyridylaminomethyl)benzene (L2), which contain two chelating dipyridylamine units connected by an aromatic spacer, were synthesized. The cationic dinuclear complexes were isolated as their hexafluorophosphate salts and characterized by using a combination of NMR, IR, and UV/Vis spectroscopic methods and mass spectrometry. The solid‐state structure of complex 8 as a representative was determined by X‐ray structure analysis.  相似文献   

16.
A simple and rapid HPLC–MS/MS method was developed and validated for simultaneous measurement of phosphocreatine and its metabolites creatine and creatinine in children's plasma. A 50 μL aliquot of plasma was prepared by protein precipitation with acetonitrile–water (1000 μL, 1:1, v/v) followed by separation on a Hypersil Gold C18 column (35°C) with gradient mobile phase consisting of 2 mm ammonium acetate aqueous solution (pH 10) and methanol at a flow rate of 0.3 mL/min and analyzed by mass spectrometry in both positive (phosphocreatine) and negative (creatine and creatinine) ion multiple reaction monitoring mode. Good linearity (r > 0.99) was obtained for the three analytes. The intra‐day and inter‐day values of CV were <5.46% (?13.09% ≤ RE ≤ 2.57%). The average recoveries of the three analytes were 70.9–97.5%. No obvious impact was found for the quantitation of three analytes in normal, hemolyzed and hyperlipemic plasma. In the end, this method was successfully applied to a pharmacokinetic study of phosphocreatine in children (six cases) with viral myocarditis of children after intravenous infusion of 2 g of the test drug. The pharmacokinetc parameters of phosphocreatine/creatine were as follows: t1/2 0.24/0.83 h, Tmax 0.49/0.55 h, Cmax 47.34/59.29 μg/mL, AUClast 17.07/59.63 h μg/mL, AUCinf 17.16/79.01 h μg/mL and MRT 0.29/0.67 h.  相似文献   

17.
A sensitive high‐performance liquid chromatography–positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of ambrisentan in plasma. The analyte and the internal standard (armodafinil) were extracted from plasma by acetonitrile precipitation and they were separated on a reversed‐phase C18 column with a gradient program. The MS acquisition was performed with multiple reaction monitoring mode using the respective [M + H]+ ions, m/z 379–347 for ambrisentan and m/z 274–167 for the IS. The assay exhibited a linear dynamic range of 1–2000 ng/mL for ambrisentan in plasma. Acceptable precision (<10%) and accuracy (100 ± 8%) were obtained for concentrations over the standard curve range. The method was successfully applied to quantify ambrisentan concentrations in a rodent pharmacokinetic study after a single oral administration of ambrisentan at 2.5 mg/kg to rats. Following oral administration the maximum mean concentration in plasma (Cmax; 1197 ± 179 ng/mL) was achieved at 1.0 ± 0.9 h (Tmax), and the area under the curve (AUC) was 6013 ± 997 ng h/mL. Therefore, development of such a simple and sensitive method in rat plasma should translate into a method for ambrisentan in human plasma for clinical trials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
An imidazolium‐modified hexa‐peri‐hexabenzocoronene derivative (HBC‐C11‐MIM[Cl?]) was designed and synthesized as a stabilizer to fabricate reduced graphene oxide (RGO). The resulting RGO/HBC‐C11‐MIM[Cl?] hybrid shows excellent dispersivity (5.0 mg mL?1) and stability in water. RGO/HBC‐C11‐MIM[Cl?] was comprehensively characterized by using atomic force microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, thermogravimetric analysis, and Raman spectroscopy, thus revealing that one HBC‐C11‐MIM[Cl?] group can stabilize about 178 carbon atoms on the graphene sheets. The obtained hybrid film exhibits a high conductivity of 286 S m?1. Furthermore, the HBC‐C11‐MIM[Cl?]‐modified RGO sheets can be readily dispersed in polar organic solvents upon exchange of the hydrophilic Cl? ions for hydrophobic bis(trifluoromethylsulfonyl) amide (NTf2?) ions.  相似文献   

19.
A sensitive high‐performance liquid chromatography–positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of urapidil in plasma. Following liquid–liquid extraction, the analyte was separated using an isocratic mobile phase on a reverse‐phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H]+ ions, m/z 388 to 205 for urapidil and m/z 452 to 344 for the internal standard. The assay exhibited a linear dynamic range of 0.1–500 ng/mL for urapidil in plasma. Acceptable precision (<7%) and accuracy (100 ± 8%) were obtained for concentrations over the standard curve range. The method was successfully applied to quantify urapidil concentrations in a preclinical pharmacokinetic study after a single oral administration of urapidil at 3 mg/kg to rats. Following oral administration the maximum mean concentration in plasma (Cmax; 616 ± 73 ng/mL) was achieved at 0.5 h (Tmax) and area under curve (AUC0–24) was 1841 ± 308 ng h/mL. The half‐life (t1/2) and clearance (Cl) were 2.47 ± 0.4 h and 1660 ± 276 mL/h/kg, respectively. Moreover, it is plausible that the assay method in rat plasma would facilitate the adaptability of urapidil quantification in human plasma for clinical trials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
An LC–MS/MS method with internal standard tolfenamic acid for determining diclofenac sodium (DCF) in dairy cow plasma was developed and validated. Samples were processed with protein precipitation by cold formic acid–acetonitrile. Determination of DCF was performed using LC–ESI+–MS/MS with the matrix‐matched calibration curve. The results showed that the method was sensitive (LOD 2 ng mL?1, LOQ 5 ng mL?1), accurate (97.60 ± 5.64%), precise (<10%) and linear in the range of 5–10,000 ng mL?1. A single intravenous (i.v.) or intramuscular (i.m.) administration of 5% diclofenac sodium injection at a dose of 2.2 mg kg?1 was performed in six healthy dairy cows according to a two‐period crossover design. The main pharmacokinetic (PK) parameters after a single i.v. administration were as follows: t1/2β, 4.52 ± 1.71 h; AUC, 77.79 ± 16.76 h μg mL?1; mean residence time, 5.16 ± 1.11 h. The main PK parameters after a single i.m. administration were as follows: Tmax, 2.38 ± 1.19 h; Cmax, 7.46 ± 1.85 μg mL?1; t1/2β, 9.46 ± 2.86 h; AUC 67.57 ± 13.07 h μg mL?1. The absolute bioavailability was 87.37 ± 5.96%. The results showed that the diclofenac sodium injection had PK characteristics of rapid absorption and slow elimination, and high peak concentration and bioavailability in dairy cows, and that the recommended clinical dosage of diclofenac sodium injection is 2.2 mg kg?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号