首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New series of triorganotin(IV) complexes with 4′‐nitrobenzanilide semicarbazone (L1H) and 4′‐nitrobenzanilide thiosemicarbazone (L2H) of the type [R3Sn(L)] (R = ‐CH3, ‐C6H5 and n‐C4H9) were synthesized under microwave irradiation. All the complexes were characterized by elemental analysis, conductance measurements, molecular weight determinations and spectral data, viz., IR, UV–vis, 1H, 13C and 119Sn NMR. The central tin atoms of these complexes are all five‐coordinated with trigonal bipyramidal geometry. In order to assess their growth inhibitory potency semicarbazone, thiosemicarbazone and their triorganotin(IV) complexes were tested in vitro against some pathogenic fungi and bacteria. Also the ligands and their organotin(IV) complexes were studied to assess the effects of long‐term ingestion of these compounds on fertility, body and reproductive organ weights. The biochemical analyses were also performed on blood samples and reproductive organs of male rats. The findings have been presented in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Phosphine-sulfonate based palladium is one of the most extensively studied catalyst systems in olefin polymerization.This type of catalyst features six-membered chelate ring size,and can enable the copolymerizations of ethylene with a wide variety of polar monomers.In this contribution,we decide to investigate the influence of chelate ring size on the properties of phosphinesulfonate palladium catalysts.As such,a series of phosphine-sulfonate ligands and the corresponding seven-membered ring Pd(II)complexes[κ~2-(P,O)-2-(CH_2-PR_1R_2)-4-methylphenyl-sulfonato]Pd(Me)(DMSO)(Pd1,R_1=R_2=Cy,Pd2,R_1=R_2=o-Me O-C_6H_4;Pd3,R_1=Ph,R_2=2-[2,6-(Me O)_2C_6H_3]C_6H_4;DMSO=dimethyl sulfoxide)were designed,prepared and characterized.These palladium complexes are moderately active when they were applied in ethylene polymerization and copolymerizations with methyl acrylate and butyl vinyl ether.However,their properties are greatly reduced from those of the classic six-membered ring phosphine-sulfonate palladium complex Pd2′.The experimental results indicate that the bigger chelate ring size can increase the ligand flexibility and damage the catalytic properties for the phosphine-sulfonate type palladium catalysts.  相似文献   

3.
Reaction of thiosemicarbazones of salicylaldehyde and 2-hydroxyacetophenone (H2L1 and H2L2) with [Ir(PPh3)3Cl] affords complexes of type [Ir(PPh3)2(L)(H)] (L = L1 or L2) in ethanol. A similar reaction carried out in toluene affords the [Ir(PPh3)2(L)(H)] complexes along with complexes of type [Ir(PPh3)2(L)Cl], where a chloride is coordinated to iridium instead of the hydride. The structure of the [Ir(PPh3)2(L2)(H)] and [Ir(PPh3)2(L2)Cl] complexes has been determined by X-ray crystallography. Crystal data for [Ir(PPh3)2(L2)(H)]: space group, P21/c; crystal system, monoclinic; a=12.110(2) Å, b=17.983(4) Å, c=18.437(4) Å, β=103.42(3)°, Z=4; R 1=0.0591, wR 2=0.1107. Crystal data for [Ir(PPh3)2(L2)Cl]: space group, P21/c; crystal system, monoclinic; a=17.9374(11) Å, b=19.2570(10) Å, c=24.9135(16) Å, β=108.145(5)°, Z=4; R 1=0.0463, wR 2=0.0901. In all the complexes the thiosemicarbazones are coordinated to the metal center as dianionic tridentate O, N, S-donors and the two triphenylphosphines are trans. The complexes are diamagnetic (low-spin d? 6, S=0) and show intense MLCT transitions in the visible region. Cyclic voltammetry on all the [Ir(PPh3)2(L)(H)] and [Ir(PPh3)2(L)Cl] complexes shows a quasi-reversible Ir(III)–Ir(IV) oxidation within 0.55–0.78 V vs. SCE followed by an irreversible oxidation of the thiosemicarbazone within 0.91–1.27 V vs. SCE. An irreversible reduction of the thiosemicarbazone is also observed within ?1.10 to ?1.23 V vs. SCE.  相似文献   

4.
The syntheses and crystal structures of two one-dimensional coordination polymers, [Mn(C5HO2F6)2(C16H20N2)] n (1) and [Mn(C5HO2F6)2(C20H20N2)] n (2), are described, where C5HO2F6 ? is the hexafluoro acetylacetonate anion, C16H20N2 is 1,6-bis(4-pyridyl)-hexane, and C20H20N2 is 1,4-bis[2-(3-pyridyl)ethyl]-benzene. In both phases, the metal ion lies on a crystallographic twofold axis and is coordinated by two chelating C5HO2F6 ? anions and two bridging bipyridyl ligands to generate a cis-MnN2O4 octahedron. The bridging ligands, which are completed by crystallographic inversion symmetry in both compounds, connect the metal nodes into zigzag [20 1 ] chains in 1 and contorted [001] chains in 2. Intrachain C–H???O interactions occur in 1 but not in 2, which may be correlated with the relative orientations of the ligands. Crystal data: 1, C26H22F12MnN2O4, M r = 709.40, monoclinic, C2/c (No. 15), a = 9.3475(2) Å, b = 16.6547(3) Å, c = 18.3649(4) Å, β = 91.1135(8)°, V = 2858.50(10) Å3, Z = 4, R(F) = 0.030, w R(F 2) = 0.075. 2, C30H22F12MnN2O4, M r = 757.44, monoclinic, C2/c (No. 15), a = 19.9198(2) Å, b = 10.6459(2) Å, c = 16.8185(3) Å, β = 119.8344(8)°, V = 3093.91(9) Å3, Z = 4, R(F) = 0.032, w R(F 2) = 0.078.  相似文献   

5.
The behavior of potassium tetrachloropalladate(II) in media simulating biological liquids is studied. The rate of aquation in aqueous NaCl solutions is shown to be higher than the rate at which the Cl? ligand enters the inner coordination sphere of the Pd atom. In HCl solutions, the formation of the Pd chloro complexes predominates due to protonation of water molecules in the composition of aqua complexes. The reactions of replacement of the ligands (H2O molecules and H3O+ ion) in the planar Pd(II) complexes by the chloride ion are studied by the ZINDO/1 method. All the complexes containing H2O and H3O+ ligands, except for [Pd(H2O)4]2+, contain intramolecular hydrogen bonds. The ZINDO/1 and RHF/STO-6G(d) calculations revealed “nonclassic” symmetrical O? H?O hydrogen bond in the [[Pd(H2O)3(H3O)]3+ and trans-[Pd(H2O)2(H3O)Cl]2+ complexes. The replacement of the H3O+ ion by the Cl? ion at the first three steps is thermodynamically more advantageous than the displacement of water molecules from the metal coordination sphere. The logarithms of stepwise stability constants of Pd(II) chloro complexes are found to correlate linearly with the enthalpies (ZINDO/1, PM3) of reactions of H2O replacement by Cl?.  相似文献   

6.
By X-ray structural analysis the crystal structure of 2-bromo-3-phenylpropenal benzoylhydrazone (HL) was determined. The molecule is not flat. In the crystal the HL molecules form infinite chains with reciprocal van der Waals interaction. 2-Bromo-3-phenylpropenal hydrazone (HL) and thiosemicarbazone (HL′) react with cobalt, nickel, copper and zinc chlorides, nitrates and acetates to form coordination compounds of the composition Cu(HL)(L)2 [HL = C6H5-CH=CBr-CH=N-NH-C(O)-C6H5], MX2·2 HL′·nH2O [M = Co, Ni, Cu, Zn; X = Cl, NO3, HL′ = C6H5-CH=CBr-CH=N-NH-C(S)-NH2; n = 0–3], MX2·HL·n H2O [M = Ni, Cu; n = 0, 1], and ML′2·nH2O [M = Co, Ni, Zn; n = 0–3]. The same reactions in the presence of amines (A = C5H5N, 2-CH3C5H4N, 3-CH3C5H4N, 4-CH3C5H4N) afford complexes of the composition CuALCl and MALX·n H2O [M = Cu, Ni; X = Cl, NO3; n = 0–2]. Structure of the coordination node in the amine-containing copper derivatives is polynuclear, in complexes Cu(HL)(L)2 is octahedral, in other compounds it is tetrahedral. The azomethines (HL and HL′) in these complexes behave as bidentate N,O and N,S ligands. Thermolysis of the complexes includes a step of dehydration (60–90°C) and complete thermal decomposition (430–590°C).  相似文献   

7.
New palladium(II) complexes, [Pd(HL)Cl] · H2O (I) and {K[Pd(L1)(NO2)] · H2O}2, with S-methylisothiosemicarbazone of salicylaldehyde (H2L) and its derivative (H2L1) were synthesized. X-ray diffraction analysis demonstrated the ambident nature of S-alkylated thiosemicarbazone, which is attached to palladium(II) through O, N, and S donor atoms in I and through O, N, and N atoms in II. This is the first known case of metal coordination of the alkylated sulfur atom of a thiosemicarbazide moiety of the ligand. A mechanism of nitrosation of the terminal amide nitrogen atom of the H2L1 ligand during complexation was proposed.  相似文献   

8.
Reactions of copper(II) acetate with N1‐subsitituted salicylaldehyde thiosemicarbazones [R1R2C2=N3–N2H–C1(=S)–N1HR3;R1 = 2‐HO–C6H4–, R2 = H : R3 = Me (H2L1), Et (H2L2)] are described. Copper(II) acetate was reacted with H2L1 and H2L2 ligands in the presence of polypyridyl co‐ligands, and this led to the formation ofmononuclear complexes, [Cu(κ3‐O, N, S‐L1)(κ2‐N, N‐bipy)] ( 1 ),[Cu(κ3‐O, N, S‐L)(κ2‐N, N‐phen)] [L = L1 ( 3 ), L2 ( 4 )], [Cu(κ3‐O, N, S‐L)(κ2‐N, N‐tmphen)] [L =L1 ( 5 ), L2 ( 6 )] and a dinuclear complex, [Cu2L22(bipy)] ( 2 ) (bipy = 2, 2′‐bipyridine, phen = 1, 10‐phenanthroline, tmphen = 3, 4, 7, 8‐tetramethyl‐1, 10‐phenanthroline). In dinuclear complex 2 , one ligand is O, N3,S‐chelating, while second is O, N3,S‐chelation‐cum‐N2‐bridging; and in all others thio‐ligands are O, N3,S‐chelating. The μeff values for the complexes lie in the range of 1.79–1.83 BM. Complexes 1 , 3 – 6 have square pyramidal arrangement, whereas complex 2 has two independent molecules in the crystal lattice, and each molecule has trigonal bipyramidal square planar (5:4) coordination pair. Complexes 2 , 4 , and 6 showed fluorescence properties.  相似文献   

9.
A series of novel zirconium complexes {R2Cp[2‐R1‐6‐(2‐CH3OC6H4N?CH)C6H3O]ZrCl2 ( 1 , R1 = H, R2 = H, 2 : R1 = CH3, R2 = H; 3 , R1 = tBu, R2 = H; 4 , R1 = H, R2 = CH3; 5 , R1 = H, R2 = n‐Bu)} bearing mono‐Cp and tridentate Schiff base [ONO] ligands are prepared by the reaction of corresponding lithium salt of Schiff base ligands with R2CpZrCl3·DME. All complexes were well characterized by 1H NMR, MS, IR and elemental analysis. The molecular structure of complex 1 was further confirmed by X‐ray diffraction study, where the bond angle of Cl? Zr? Cl is extremely wide [151.71(3)°]. A nine‐membered zirconoxacycle complex Cp(O? 2? C6H4N?CHC6H4‐2? O)ZrCl2 ( 6 ) can be obtained by an intramolecular elimination of CH3Cl from complex 1 or by the reaction of CpZrCl3·DME with dilithium salt of ligand. When activated by excess methylaluminoxane (MAO), complexes 1–6 exhibit high catalytic activities for ethylene polymerization. The influence of polymerization temperature on the activities of ethylene polymerization is investigated, and these complexes show high thermal stability. Complex 6 is also active for the copolymerization of ethylene and 1‐hexene with low 1‐hexene incorporation ability (1.10%). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Reaction of the thiosemicarbazone ligands C4H4NC(H)=NN(H)C(S)NHR (R = Me, a ; Et, b ) with Li2[PdCl4] gave the dinuclear complexes [Pd{C4H4NC(H)=NNC(S)NHR}(μ‐Cl)]2 (R = Me, 1a ; Et, 1b ) with a central Pd2Cl2 core and with deprotonation of the thiosemicarbazones at the hydrazinic nitrogen atom. Treatment of 1a and 1b with triphenylphosphine gave the mononuclear compounds [Pd{C4H4C(H)=NNC(S)NHR}(Cl)(PPh3)] (R = Me, 2a ; Et, 2b ), whereas reaction of 1a and 1b with tertiary diphosphines gave mono‐ and dinuclear compounds, as appropriate, with the corresponding diphosphine acting as a monodentate ( 6b ), chelating ( 3a ) and bridging ligand ( 4a, 5a , 4b, 5b ). Treatment of 1a and 1b with (Ph2PCH2CH2PPh2)W(CO)5 gave the new heterobimetallic complexes 7a and 7b . The crystal structures of complexes 3a and 4a are described.  相似文献   

11.
Reaction of RuCl2(PPh3)3 with N‐Phenyl‐pyridine‐2‐carbaldehyde thiosemicarbazone (C5H4N–C2(H)=N3‐N2H–C1(=S)N1HC6H5, Hpytsc‐NPh) in presence of Et3N base led to loss of ‐N2H‐proton and yielded the complex [Ru(pytsc‐NPh)2(Ph3P)2] ( 1 ). Similar reactions of precursor RuCl2[(p‐tolyl)3P]3 with a series of thiosemicarbazone ligands, viz. pyridine‐2‐carbaldehyde thiosemicarbazone (Hpytsc), salicylaldehyde thiosemicarbazone (H2stsc), and benzaldehyde thiosemicarbazone (Hbtsc), have yielded the complexes, [Ru(pytsc)2{(p‐tolyl)3P}2] ( 2 ), [Ru(Hstsc)2{(p‐tolyl)3P}]2 ( 3 ), and [Ru(btsc)2{(p‐tolyl)3P}2] ( 4 ), respectively. The reactions of precursor Ru2Cl4(dppb)3 {dppb = Ph2P–(CH2)4–PPh2} with H2stsc, Hbtsc, furan‐2‐carbaldehyde thiosemicarbazone (Hftsc) and thiophene‐2‐carbaldehyde thiosemicarbazone (Httsc) have formed complexes of the composition, [Ru(Hstsc)2(dppb)] ( 5 ), [Ru(btsc)2(dppb)] ( 6 ), [Ru(ftsc)2(dppb)] ( 7 ), and [Ru(ttsc)2(dppb)] ( 8 ). The complexes have been characterized by analytical data, IR, NMR (1H, 31P) spectroscopy and X‐ray crystallography ( 1 and 5 ). The proton NMR confirmed loss of –N2H– proton in all the compounds, and 31P NMR spectra reveal the presence of equivalent phosphorus atoms in the complexes. In all the compounds, thiosemicarbazone ligands coordinate to the RuII atom via hydrazinic nitrogen (N2) and sulfur atoms. The arrangement around each metal atom is distorted octahedral with cis:cis:trans P, P:N, N:S, S dispositions of donor atoms.  相似文献   

12.
Tri(1‐cyclohepta‐2, 4, 6‐trienyl)phosphane, P(C7H7)3 ([P] when coordinated to a metal atom), was used to stabilize complexes of platinum(II) and palladium(II) with chelating dichalcogenolato ligands as [P]M(E∩E) [E = S, ∩ = CH2CH2, M = Pt ( 3a ); E = S, ∩ = 1, 2‐C6H4, M = Pt ( 5a ), Pd ( 6a ); E = S, ∩ = C(O)C(O), M = Pt ( 7a ), Pd ( 8a ); E = S, Se, ∩ = 1, 2‐C2(B10H10), M = Pt ( 9a, 9b ), Pd ( 10a, 10b ); E = S, ∩ = Fe2(CO)6, M = Pt ( 11a ), Pd ( 12a )]. Starting materials in all reactions were [P]MCl2 with M = Pt ( 1 ) and Pd ( 2 ). Attempts at the synthesis of [P]M(ER)2 with non‐chelating chalcogenolato ligands were not successful. All new complexes were characterized by multinuclear magnetic resonance spectroscopy in solution (1H, 13C, 31P, 77Se and 195Pt NMR), and the molecular structures of 5a and 12a were determined by X‐ray analysis. Both in the solid state and in solution the ligand [P] is linked to the metal atom by the P‐M bond and by η2‐C=C coordination of the central C=C bond of one of the C7H7 rings. In solution, intramolecular exchange between coordinated and non‐coordinated C7H7 rings is observed, the exchange process being markedly faster in the case of M = Pd than for M = Pt.  相似文献   

13.
Previously unknown chiral P,N-bidentate N-pyrrolylphosphines and their chelate complexes [Rh(η2-P,N)(CO)Cl] and [Pd(Allyl)(η2-P,N)]BF4 were synthesized by phosphorylation of (E,1R,2R,3R,5S)-2-[(2,6,6-trimethylbicyclo[3.1.1]heptyl-3-)iminomethyl]-1H-pyrrole. The composition and structures of the novel compounds were determined by the 1H, 13C, and 31P NMR, IR, mass spectrometry (electrospray), and elemental analysis methods. N-pyrrolylphosphines were found to have unusual electronic properties, being simultaneously more strong π-acids and σ-bases as compared to phosphites.  相似文献   

14.
Cobalt (III) complexes with N-salicylidene-2-hydroxy-5-bromobenzylamine (H2sbba) and N-salicylidene-2-hydroxy-5-chlorobenzylamine (H2scba), [n-(C4H9)4N][Co(sbba)2] (I) and [n-(C4H9)4N][Co(scba)2] (II), were synthesized. The crystal structure of II was determined by the single-crystal X-ray diffraction method at 90 K confirming its crystallization in the monoclinic space group P21/n with a = 11.729(2) Å, b = 16.901(3) Å, c = 21.483(4) Å, β = 98.840(4)°, V = 4208.2(14) Å3, Dx = 1.295 g cm?3, and Z = 4. The R1 [I > 2σ(I)] and wR2 (all data) values of 0.0664 and 0.1920, respectively, for all 9521 independent reflections. The compound is composed of a tetra(n-butyl)ammonium cation and an octahedral cobalt(III) complex anion with two scba2? ligands in a meridional fashion. The electronic spectral features of I and II are consistent with the octahedral cobalt(III) ion with an N2O4 donor set.  相似文献   

15.
It has been demonstrated that the reaction of Cat[Ag[B12H12]] or [Ag2[B12H12]] with chelating ligands L (L = bipy, phen) leads to the selective formation of stable [(Ag2(L)2[B12H12]] n 1D polymers irrespective of the nature of cation (Cat) in the starting reagent, the ratio of the reaction components, and the solvent used. The structures of [Ag2(bipy)2[B12H12]] n · 2CH3CN and [Ag2(phen)2[B12H12]] n · DMF have been determined by X-ray crystallography. It has been demonstrated that the [B12H12]2? anion in polymer chains acts as a bridging ligand coordinated to silver atoms through edges or through an edge and a vertex of the icosahedron. The Ag–B(H) and Ag–H(B) distances are within 2.638(3)–3.074(3) and 1.90–2.80 Å, respectively. These complexes are the first examples of 1D coordination polymers based on the [B12H12]2? anion and azaheterocyclic ligands L.  相似文献   

16.
Novel volatile heterocomplex compounds based on copper(II) and palladium(II) fluorinated β-diketonates are studied. The crystals of the synthesized compounds are shown to be composed of 1D coordination polymers in the form of chains of alternating molecules of monometallic complexes. The crystallographic data for [Cu(hfa)2?Pd(zif)2] are as follows: C26H22F18O10CuPd, P21/c, a = 7.9947(18) Å, b = 19.277(4) Å, c = 13.609(3) Å, β = 118.298(15)°, V = 1846.7(7) Å3, Z = 2, d = 1.810 g/cm3. The thermal properties of the compounds are examined by TG-DTA and vacuum sublimation. The complexes are studied as the precursors for producing copper-palladium alloy films by chemical vapor deposition. It is demonstrated that bimetallic alloy coatings with a ratio Cu/Pd = 1:1 can be prepared from [Cu(hfa)2?Pd(zif)2].  相似文献   

17.
Reaction of salicyldehyde thosemicarbazone (H2L1), 2-hydroxyacetophenone thiosemicarbazone (H2L2) and 2-hydroxynapthaldehyde thiosemicarbazone (H2L3) (general abbreviation H2L, where H2 stands for the two dissociable protons, one phenolic proton and one hydrazinic proton) with K2[PtCl4] afforded a family of polymeric complexes of type [{Pt(L)}n]. Reaction of the polymeric species with two monodentate ligands (D), viz. triphenylphosphine (PPh3) and 4-picoline (pic), yielded complexes of the type [Pt(L)(D)]. These mixed-ligand complexes were also obtained from the reaction of the thiosemicarbazones with [Pt(PPh3)2Cl2] and [Pt(pic)2Cl2]. The crystal structure of [Pt(PPh3)(L2)] has been determined. The thiosemicarbazone ligands are coordinated, via dissociation of the two protons, as dianionic tridentate O,N,S-donors. The [Pt(L)(D)] complexes show characteristic 1H NMR spectra and intense absorptions in the visible and ultraviolet region. They also fluoresce in the visible region at ambient temperature.  相似文献   

18.
A new mixed-ligand one-dimensional copper(II) coordination polymer [Cu(en)(sal)Cl] n where en = ethylenediamine(C2H8N2) and Hsal = 2-hydroxybenzoic acid (salicylic acid; C7H6O3) is synthesized and characterized by FTIR spectroscopy and single crystal X-ray diffraction. The structure contains Cu2+ ions in two different distorted octahedral coordination environments: an axially extended CuN4Cl2 moiety arising from a pair of bidentate en ligands and a CuO4Cl2 moiety arising from a pair of asymmetrically coordinated sal anions. The chloride ions bridge the copper ions into a zigzag chain propagating in [001]. The structure is consolidated by N–H???O and N–H???Cl hydrogen bonds which generate a layered network. Crystal data: C9H13ClCuN2O3, M r = 296.20, monoclinic, P21/c, a = 13.9179(10) Å, b = 10.4900(8) Å, c = 8.5181(6) Å, β = 105.518(4)°, V = 1198.30(15) Å3, Z = 4, R(F) = 0.026, w R(F 2) = 0.068.  相似文献   

19.
《Polyhedron》1987,6(5):921-929
Complexes of the terdentate ligands bis[2-diphenylphosphino)ethyl]benzylamine (DPBA) and bis[2-(diphenylarsino)ethyl]benzylamine (DABA) with Co(II), Ni(II), Pd(II), Pt(II), Rh(III), Ir(III), Rh(I) and Ir(I) are reported. The ligand DPBA reacts with Co(II) ion to form two types of complexes: a high-spin, paramagnetic, tetrahedral Co(II) complex of composition [CoCl(DPBA)]Cl and a low-spin, paramagnetic, square-planar complex of composition [CoBr(DPBA)]B(C6H5)4. The reaction of DPBA with Ni(II) ion in methanol yields low-spin, diamagnetic, square-planar complexes of type [NiX(DPBA)]Y [X = Cl, Br or I; Y = Cl or B(C6H5)4]. Four-coordinate, square-planar, cationic complexes of type [MY(L+[M = Pd(II), Pt(II), Rh(I) or Ir(I); Y = Cl or P(C6H5)3; L = DPBA or DABA], were obtained on reaction of L with various starting materials containing these metal ions. Reaction of DPBA and DABA with rhodium and iridium trichlorides gave octahedral, neutral complexes of general formula [MCl3(L)] (M = Rh or Ir, L = DPBA or DABA). All the complexes were characterized on the basis of their elemental analysis, molarconductance data, magnetic susceptibilities, electronic spectra, IR spectral measurements, and1H and31P-{1H} NMR spectral data.  相似文献   

20.
The Calvin–Bjerrum pH titration technique as modified by Irving and Rossotti has been applied to determine the stability constants of complexes of a series of thioligands, namely benzaldehyde thiosemicarbazone, pyridine-2-carbaldehyde thiosemicarbazone, and cyclopentanone thiosemicarbazone with divalent metal ions (Cu, Cd, Co, Ni, Pb, and Zn). The studies were carried out in 50% v/v dioxane-water at different temperatures (293 K, 303 K, and 313 K) keeping ionic strength at 0.1 mol KNO3. The thioligands undergo deprotonation of only one proton (–N2H–) of a thiosemicarbazone [R1R2C2=N3–N2(H)–C1(=S)N1H2]. Thermodynamic parameters, such as free energy, enthalpy, and entropy have also been evaluated. The investigations represent the first report of the solution phase studies in metal–thiosemicarbazone chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号