共查询到20条相似文献,搜索用时 15 毫秒
1.
Causgrove TP Brune DC Blankenship RE 《Journal of photochemistry and photobiology. B, Biology》1992,15(1-2):171-179
Energy transfer properties of whole cells and chlorosome antenna complexes isolated from the green sulfur bacteria Chlorobium limicola (containing bacteriochlorophyll c), Chlorobium vibrioforme (containing bacteriochlorophyll d) and Pelodictyon phaeoclathratiforme (containing bacteriochlorophyll e) were measured. The spectral overlap of the major chlorosome pigment (bacteriochlorophyll c, d or, e) with the bacteriochlorophyll a B795 chlorosome baseplate pigment is greatest for bacteriochlorophyll c and smallest for bacteriochlorophyll e. The absorbance and fluorescence spectra of isolated chlorosomes were measured, fitted to gaussian curves and the overlap factors with B795 calculated. Energy transfer times from the bacteriochlorophyll c, d or e to B795 were measured in whole cells and the results interpreted in terms of the F?rster theory of energy transfer. 相似文献
2.
We present the theory for the distribution of the number of donor and acceptor photons detected in a time bin and the corresponding energy-transfer efficiency distribution obtained from single-molecule Forster resonance energy-transfer measurements. Photon counts from both immobilized and freely diffusing molecules are considered. Our starting point is the joint distribution for the donor and acceptor photons for a system described by an arbitrary kinetic scheme. This is simplified by exploiting the time scale separation between fast fluorescent transitions and slow processes which include conformational dynamics, intersystem conversion to a dark state, and translational diffusion in and out of the laser spot. The fast fluorescent transitions result in a Poisson distribution of the number of photons which is then averaged over slow fluctuations of the local transfer efficiency and the total number of photons. The contribution of various processes to the distribution and the variance of the energy-transfer efficiency are analyzed. 相似文献
3.
Barford W 《The journal of physical chemistry. A》2010,114(43):11842-11843
The line dipole approximation is used to investigate analytical corrections to the F?rster energy transfer rate, k, derived via the point dipole approximation. It is shown that that for molecules whose conjugation length, L, is much larger than the separation, R, between molecules the line dipole approximation predicts k ~ (RL)?2 ~ (RN)?2 (where N is the number of conjugated monomer units). This is in contrast to the point dipole approximation, which predicts k ~ L2R?? ~ N2R??. 相似文献
4.
Czuper A Gryczynski I Kuśba J 《Journal of photochemistry and photobiology. B, Biology》2007,87(3):200-208
Necessary modifications to the expression for the F?rster energy transfer rate are discussed when fluorescence decay of the donor in the absence of acceptor is nonexponential. Discrete and continuous models of the nonexponentiality are taken into account. No general solution of the problem is found. It is, however, suggested that in many of the biochemical problems the most appropriate modification of the transfer rate can be that which is based on the assumption of the same constant value of the radiative decay rate for all donor molecules. The effect of the assumed form of the F?rster energy transfer rate on the recovered values of the distance distribution and dynamics parameters of some exemplary bichromophoric systems is examined. 相似文献
5.
Merzlyakov M Li E Casas R Hristova K 《Langmuir : the ACS journal of surfaces and colloids》2006,22(16):6986-6992
F?rster resonance energy transfer (FRET), a fluorescence detection technique, is often used for sensing molecular interactions in solution and in membranes. Here we show that (1) FRET spectra can be recorded in single bilayers, supported on a surface, and (2) the fluorescein/rhodamine dye pair is an adequate reporter of FRET when spectral detection is used. Thus, measurements pertaining to molecular interactions in membranes can be carried out in supported bilayers. Spectral FRET has advantages over imaging FRET, which monitors only signal amplitudes at certain wavelength. There are also advantages to performing spectral FRET measurements in supported bilayers as compared to free liposomes in suspension. However, the spectral properties of dyes can be altered in an unexpected manner in an ordered bilayer structure on a surface, such that fluorescence detection in surface-supported bilayers is not always trivial. 相似文献
6.
7.
Bai D Benniston AC Hagon J Lemmetyinen H Tkachenko NV Clegg W Harrington RW 《Physical chemistry chemical physics : PCCP》2012,14(13):4447-4456
An anthracenyl-Bodipy dyad containing a triazole bridge, that acts to decouple the two units in the ground state, has been synthesised and structurally characterised. Efficient electronic energy transfer occurs from the anthracenyl-based unit to the Bodipy system in toluene in around 12 ps, and becomes faster in solvents of lower refractive index. The rate of electronic energy transfer is discussed in terms of F?rster theory. 相似文献
8.
Gronheid R Hofkens J Köhn F Weil T Reuther E Müllen K De Schryver FC 《Journal of the American Chemical Society》2002,124(11):2418-2419
The photophysics of a dendrimer containing four donor chromophores and one acceptor chromophore are studied at the single-molecule level. Upon excitation of the donors exclusive acceptor emission is observed due to efficient F?rster energy transfer. For 70% of the molecules donor emission is observed after bleaching of the acceptor, leading to a reduction of the F?rster energy transfer efficiency. Furthermore, we demonstrate that in this molecular system the donor chromophores do not bleach by a triplet-sensitized photooxidation. 相似文献
9.
Sissa C Manna AK Terenziani F Painelli A Pati SK 《Physical chemistry chemical physics : PCCP》2011,13(28):12734-12744
Resonance Energy Transfer (RET) is investigated in pairs of charge-transfer (CT) chromophores. CT chromophores are an interesting class of π conjugated chromophores decorated with one or more electron-donor and acceptor groups in polar (D-π-A), quadrupolar (D-π-A-π-D or A-π-D-π-A) or octupolar (D(-π-A)(3) or A(-π-D)(3)) structures. Essential-state models accurately describe low-energy linear and nonlinear spectra of CT-chromophores and proved very useful to describe spectroscopic effects of electrostatic interchromophore interactions in multichromophoric assemblies. Here we apply the same approach to describe RET between CT-chromophores. The results are quantitatively validated by an extensive comparison with time-dependent density functional theory (TDDFT) calculations, confirming that essential-state models offer a simple and reliable approach for the calculation of electrostatic interchromophore interactions. This is an important result since it sets the basis for more refined treatments of RET: essential-state models are in fact easily extended to account for molecular vibrations in truly non-adiabatic approaches and to account for inhomogeneous broadening effects due to polar solvation. Optically forbidden (dark) states of quadrupolar and octupolar chromophores offer an interesting opportunity to verify the reliability of the dipolar approximation. In striking contrast with the dipolar approximation that strictly forbids RET towards or from dark states, our results demonstrate that dark states can take an active role in RET with interaction energies that, depending on the relative orientation of the chromophores, can be even larger than those relevant to allowed states. Essential-state models, whose predictions are quantitatively confirmed by TDDFT results, allow us to relate RET interaction energies towards allowed and dark states to the supramolecular symmetry of the RET-pair, offering reliable design strategies to optimize RET-interactions. 相似文献
10.
11.
A new approach to the creation of cholesteric glass‐forming materials with photovariable fluorescent properties is suggested. This approach is based on Förster type energy transfer from a photochemically active donor to a highly fluorescent acceptor. For this purpose, a cholesteric mixture containing two fluorescent dopants based on anthracene (Dianthr) and stilbene (DCM) was prepared and studied. The absorbance peak of DCM molecules overlaps the emission peak of Dianthr. The possibility of using energy transfer in cholesteric mixtures containing a photoactive energy donor capable of photobleaching is demonstrated. It is shown that UV irradiation of planarly oriented films of the mixture leads to photodimerization of the Dianthr dopant. This photoreaction results in a significant decrease in the emission intensity of the DCM dopant. In all cases the emitted light is strongly circularly polarized, and the degree of polarization does not change during photoreaction. Such types of photo‐patternable glass‐forming cholesteric materials combining fluorescent properties, the possibility of energy transfer between two fluorescent dyes and a photoactivity of one fluorescent component, provide new opportunities for optical data recording and storage. 相似文献
12.
Yajiao Li Yipin Zhang Wenjiao Xu Bin Wang Jingbo Zhang 《Journal of Solid State Electrochemistry》2017,21(7):2091-2098
To extend the spectral response region of squaraine dye (SQ)-sensitized solar cell, eosin Y (EY) is encapsulated in the SQ-sensitized nanocrystalline thin film. EY is first adsorbed on nanocrystalline TiO2 thin film (n-TiO2), then a thin layer of EY contained ZnO (EY-ZnO) is electrodeposited, and SQ dye is finally sensitized to form two dye-sensitized nanocrystalline thin film with a structure of n-TiO2/EY/EY-ZnO/SQ. There is a perfect spectral overlap between the emission of EY and the absorption of SQ; EY as an energy donor simultaneously transfers both electron and hole to the energy acceptor SQ according to the Förster resonance energy transfer (FRET) process. EY shifts the spectral response edge of SQ-sensitized solar cell toward blue from 550 to 450 nm through the FRET process in this new structure. Two dye-sensitized nanocrystalline thin film demonstrates a significant enhancement in light harvesting and photocurrent generation due to the FRET process. The thickness of the EY-ZnO thin layer and spectral overlap between emission of donor dye and absorption of acceptor dye are two important factors that affect the FRET process between EY and SQ in the structure of n-TiO2/EY/EY-ZnO/SQ. 相似文献
13.
14.
Förster resonance energy transfer between InP@ZnS hydrophobic colloidal quantum dots of two different sizes has been studied in the closely packed nanoclusters formed spontaneously in an organic solvent upon the addition of a precipitating solvent. The quantum dots had a core@shell structure and were stabilized by dodecylamine ligands. 相似文献
15.
Berezhna SY Gill JP Lamichhane R Millar DP 《Journal of the American Chemical Society》2012,134(27):11261-11268
Enzymatic reactions typically involve complex dynamics during substrate binding, conformational rearrangement, chemistry, and product release. The noncovalent steps provide kinetic checkpoints that contribute to the overall specificity of enzymatic reactions. DNA polymerases perform DNA replication with outstanding fidelity by actively rejecting noncognate nucleotide substrates early in the reaction pathway. Substrates are delivered to the active site by a flexible fingers subdomain of the enzyme, as it converts from an open to a closed conformation. The conformational dynamics of the fingers subdomain might also play a role in nucleotide selection, although the precise role is currently unknown. Using single-molecule F?rster resonance energy transfer, we observed individual Escherichia coli DNA polymerase I (Klenow fragment) molecules performing substrate selection. We discovered that the fingers subdomain actually samples through three distinct conformations--open, closed, and a previously unrecognized intermediate conformation. We measured the overall dissociation rate of the polymerase-DNA complex and the distribution among the various conformational states in the absence and presence of nucleotide substrates, which were either correct or incorrect. Correct substrates promote rapid progression of the polymerase to the catalytically competent closed conformation, whereas incorrect nucleotides block the enzyme in the intermediate conformation and induce rapid dissociation from DNA. Remarkably, incorrect nucleotide substrates also promote partitioning of DNA to the spatially separated 3'-5' exonuclease domain, providing an additional mechanism to prevent misincorporation at the polymerase active site. These results reveal the existence of an early innate fidelity checkpoint, rejecting incorrect nucleotide substrates before the enzyme encloses the nascent base pair. 相似文献
16.
An alkyne‐terminated anthracene and azide‐terminated carbazole were joined through a copper‐catalyzed cycloaddition to form a joined donor/acceptor pair. The photonic pair exhibited energy transfer when excited at the peak absorbance of carbazole and fluoresced with an anthracene spectral response. The fluorescent behavior was confirmed as Förster energy transfer (FRET). The lysate of Pseudomonas resinovorans CA10, a member of a predominant group of soil microorganisms that can metabolize a host of substrates, was employed to degrade the pair and alter the luminance spectral characteristics. The FRET was diminished and the corresponding, individual fluorescence of carbazole and anthracene returned. This general approach may find applications in single‐cell metabolic studies and bioactivity assays. 相似文献
17.
L Lee AP Johnston F Caruso 《Langmuir : the ACS journal of surfaces and colloids》2012,28(34):12527-12535
DNA films are of interest for use in a number of areas, including sensing, diagnostics, and as drug/gene delivery carriers. The specific base pairing of DNA materials can be used to manipulate their architecture and degradability. The programmable nature of these materials leads to complex and unexpected structures that can be formed from solution assembly. Herein, we investigate the structure of DNA multilayer films using F?rster resonance energy transfer (FRET). The DNA films are assembled on silica particles by depositing alternating layers of homopolymeric diblocks (polyA(15)G(15) and polyT(15)C(15)) with fluorophore (polyA(15)G(15)-TAMRA) and quencher (polyT(15)C(15)-BHQ2) layers incorporated at predesigned locations throughout the films. Our results show that DNA films are dynamic structures that undergo rearrangement. This occurs when the multilayer films are perturbed during new layer formation through hybridization but can also take place spontaneously when left over time. These films are anticipated to be useful in drug delivery applications and sensing applications. 相似文献
18.
A mathematical model has been developed to compute the spectroscopic properties of fluorescence systems with multiple F?rster transfer pairs in a homogeneous 3-dimensional matrix. This model is based on F?rster energy transfer theory and needs only a limited number of parameters which depend only on the properties of the individual dyes and their pair-wise interactions. Yet, the model allows the accurate prediction on the fluorescence properties of systems comprising mutual F?rster transfer between three dyes. The model is compared to an experimental system composed of reverse micelles and water soluble dyes. Although the experimental system might include additional effects that may influence the fluorescence properties (e.g. adsorption to the micelle walls, aggregation of the dyes) the agreement between the mathematical model and the experimental system is reasonably good. 相似文献
19.
Curutchet C Mennucci B Scholes GD Beljonne D 《The journal of physical chemistry. B》2008,112(12):3759-3766
The use of the F?rster model to predict the dynamics of resonant electronic energy transfer (RET) in a model donor-acceptor dyad (a terphenyl-bridged perylene diimide (PDI)-terrylene diimide (TDI) dyad molecule) embedded at low temperature in a PMMA matrix is tested against experiment. The relevant ingredients involved in the F?rster rate for RET, namely electronic coupling, spectral overlap, and screening effects, are accounted for in a quantitative manner. Electronic couplings are obtained from time-dependent density functional theory calculations, and the effect of the PMMA environment is included both on the transition densities and on their interaction through the IEFPCM model. We find that the presence of the terphenyl bridge induces a slight delocalization of the PDI and TDI transition densities over the bridge originating in a 56% increase in the coupling and in the breakdown of the dipole-dipole approximation. The spectral overlap is determined on the basis of a detailed simulation of the homogeneously broadened donor emission and acceptor absorption line shapes determined by fitting the single molecule spectra measured at 1.2 K. The corresponding distribution of spectral overlap throughout the ensemble is then estimated by assuming an uncorrelated inhomogeneous line broadening for the donor and acceptor. Combining the calculated electronic couplings and spectral overlaps sampled from Monte Carlo realizations of the energetic disorder, we obtain a mean RET time (approximately 8 ps) and a distribution in reasonable agreement with experiment. 相似文献
20.
Cotlet M Gronheid R Habuchi S Stefan A Barbafina A Müllen K Hofkens J De Schryver FC 《Journal of the American Chemical Society》2003,125(44):13609-13617
We report on the directional F?rster resonance energy transfer (FRET) process taking place in single molecules of a first (T1P4) and a second (T2P8) generation of a perylenemonoimide (P)-terrylenediimide (T)-based dendrimer in which the chromophores are separated by rigid polyphenylene arms. At low excitation powers, single-molecule detection and spectroscopy of T1P4 and T2P8 dendrimers point to a highly efficient directional FRET from P donors to the central T acceptor, optical excitation at 488 nm resulting in exclusively acceptor emission in the beginning of the detected fluorescence intensity. Donor emission is seen only upon the bleaching of the acceptor. High-resolution time-resolved single-molecule fluorescence data measured with a microchannel plate photomultiplier reveal, for T2P8, a broad range of FRET rates as a result of a broad range of distances and orientations experienced by the donor-acceptor dendrimers when immobilized in a polymer matrix. Single-molecule data from T2P8 on 488 nm excitation are indicative for the presence, after terrylenediimide bleaching, of a P-P excited dimer characterized by a broad emission spectrum peaking around 600 nm and by fluctuating fluorescence decay times. At high excitation powers, single T1P4 and T2P8 molecules display simultaneous emission from both donor and acceptor chromophores. The effect, called "exciton blockade", occurs due to the presence of multiple excitations in a single molecule. 相似文献