首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ha SH  Mai NL  Koo YM 《Journal of chromatography. A》2010,1217(49):7638-7641
Microwave-assisted separation has been applied to recover ionic liquid (IL) from its aqueous solution as an efficient method with respect to time and energy compared to the conventional vacuum distillation. Hydrophilic ILs such as 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][TfO]) and 1-ethyl-3-methylimidazolium methylsulfate ([Emim][MS]) could be recovered in 6 min from the mixture of ILs and water (1:1, w/w) under microwave irradiation at constant power of 10 W while it took at least 240 min to obtain ILs containing same water content (less than 0.5 wt%) by conventional vacuum oven at 363.15 K with 90 kPa of vacuum pressure. Energy consumptions per gram of evaporated water from the homogeneous mixture of hydrophilic ILs and water (1:1, w/w) by microwave-assisted separation were at least 52 times more efficient than those in conventional vacuum oven. It demonstrated that microwave-assisted separation could be used for complete recovery of ILs in sense of time and energy as well as relevant purity.  相似文献   

2.
Ionic liquids (ILs) can add value to many chemical processes. The electrochemistry and the (physical) organic chemistry communities in particular have extensively studied the structure, properties, and reactivities of various ILs and reactions therein. Inorganic and materials chemists are the newest addition to the IL community: over a number of years, various approaches to the fabrication of inorganic solids with unprecedented and sometimes unique structures and properties have been reported. This article summarizes the state of this particular sub-field of IL research and highlights a few promising approaches that not only reproduce conventional synthesis in ILs, but that provide pathways towards new, possibly unknown, inorganics with advantageous properties that cannot (or only with great difficulty) be made via conventional processes.  相似文献   

3.
4.
The photochemistry and relaxation dynamics of four room-temperature ionic liquids (RTILs) after ultraviolet (UV) photolysis were investigated by femtosecond pump-probe absorption spectroscopy. A pulse duration-limited rise of the induced absorption in halide-containing RTILs at various probe wavelengths was attributed to the generation of solvated electrons. With continuous irradiation (static conditions), di- and trihalide ion formation became apparent especially below 1000 nm. The formation of trihalide ions was further confirmed by steady-state UV absorption spectroscopy. All RTILs showed a rich photochemistry after UV photolysis leading to the build-up of various long-lived intermediate products as evidenced from the observation that ionic liquids turn yellow upon continuous irradiation. On the other hand, exposing RTILs to the excitation pulse for a short time (rapid-scan method) significantly suppressed the formation of halides. The results suggest that the development of flow-cell systems for highly viscous ionic liquids is urgently needed to quantitatively investigate their ultrafast dynamics.  相似文献   

5.
External photoelectron emission spectra of typical ionic liquids were measured in the presence and absence of iodide. Threshold energies and quantum efficiencies of the photoelectron emission were estimated. From these values, the conduction band energy of electrons and the acceptor number of each liquid were estimated. Interactions between the ionic liquids and iodide are discussed on the basis of these results.  相似文献   

6.
Development of multiple chemical tools for deoxyribonucleic acid (DNA) labeling has facilitated wide use of their functionalized conjugates, but significant practical and methodological challenges remain to achievement of site-specific chemical modification of the biomacromolecule. As covalent labeling processes are more challenging in aqueous solution, use of nonaqueous, biomolecule-compatible solvents such as an ionic liquid consisting of a salt with organic molecule architecture, could be remarkably helpful in this connection. Herein, we demonstrate site-specific chemical modification of unprotected DNAs through a tetrazene-forming amine–azide coupling reaction using an ionic liquid. This ionic liquid-enhanced reaction process has good functional group tolerance and precise chemoselectivity, and enables incorporation of various useful functionalities such as biotin, cholesterol, and fluorophores. A site-specifically labeled oligonucleotide, or aptamer interacting with a growth factor receptor (Her2) was successfully used in the fluorescence imaging of breast cancer cell lines. The non-traditional medium-promoted labeling strategy described here provides an alternative design paradigm for future development of chemical tools for applications involving DNA functionalization.

Site-specific chemical modification of unprotected DNAs through a phosphine-mediated amine–azide coupling reaction in ionic liquid.  相似文献   

7.
Ion pairing in [N-(3′-oxohexyl)-N-methylimidazolium][(R)-mandelate] was probed as a function of its concentration in ethanol and compared to the corresponding [(S)-camphorsulfonate] ionic liquid. The applied methodologies comprised asymmetric hydrogenation with ee monitoring as well as independent diffusion-ordered NMR and conductivity measurements.  相似文献   

8.
Photoisomerization dynamics of 3,3'-diethyloxadicarbocyanine iodide (DODCI) has been examined in a series of 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides by measuring its fluorescence lifetimes and quantum yields. This study has essentially been undertaken to find out whether the process of photoisomerization of DODCI in ionic liquids is different compared to that observed in conventional solvents such as alcohols. Activation energy of the reaction has been attained with the aid of isoviscosity plots and was found to be 22 ± 3 kJ mol(-1), which is a factor of two higher compared to that obtained in alcohols. The significantly higher activation energy obtained in bis(trifluoromethylsulfonyl)imides compared to alcohols is probably due to the highly ordered nature of the ionic liquids, which hinders the twisting process. Kramers theory has been applied to understand the reduced isomerization rate constants in terms of solvent friction. As in case of alcohols, the isomerization data could not be explained by the Kramers model. However, a power law relation, which is a phenomenological functional form, could mimic the observed trend.  相似文献   

9.
Cooperativity in ionic liquids is investigated by means of static quantum chemical calculations. Larger clusters of the dimethylimidazolium cation paired with a chloride anion are calculated within density functional theory combined with gradient corrected functionals. Tests of the monomer unit show that density functional theory performs reasonably well. Linear chain and ring aggregates have been considered and geometries are found to be comparable with liquid phase structures. Cooperative effects occur when the total energy of the oligomer differs from a simple sum of monomer energies. Cooperative effects have been found in the structural motifs examined. A systematic study of linear chains of increasing length (up to nine monomer units) has shown that cooperativity plays a more important role than expected and is stronger than in water. The Cl...H distance of the chloride to the most acidic proton increases with an increasing number of monomer units. The average bond distance approaches 218.9 pm asymptotically. The dipole moment grows almost linearly and the dipole moment per monomer unit reaches the asymptotic value of 16.3 D. The charge on the chloride atoms decreases with an increasing chain length. In order to detect local hydrogen bonding in the clusters a new parametrization of the shared-electron number method is introduced. We find decreasing hydrogen bond energies with an increasing cluster size for both the first hydrogen bond to the most acidic proton and the average hydrogen bond.  相似文献   

10.
The formation of vesicles from 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) in several room-temperature ionic liquids, namely, 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF(4)), 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF(6)), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf(2)), and N-benzylpyridinium bis(trifluoromethylsulfonyl)imide (BnPyNTf(2)), as well as in a water/BmimBF(4) mixture, was investigated. In pure ionic liquids, observations by staining transmission electron microscopy demonstrated clearly the formation of spherical structures with diameters of 200-400 nm. The morphological characteristics of these vesicles in ionic liquids, in particular, the membrane thicknesses, were first investigated by small-angle neutron scattering measurements. The mean bilayer thickness was found to be ~63 ± 1 ? in a deuterated ionic liquid (BnPyNTf(2)-d). This value was similar to that observed in water. The effect of ILs on the modification of the phase physical properties of multilamellar vesicles (MLVs) was then investigated by differential scanning calorimetry. In pure IL as in water, DPPC exhibited an endothermic pretransition followed by the main transition. These transition temperatures and the associated enthalpies in ILs were higher than those in water because of a reduction of the electrostatic repulsion between zwitterionic head groups. To better understand the effect of ionic liquid on the formation of multilamellar vesicles, mixtures of BmimBF(4) and water, which are miscible in all proportions, were analyzed (BmimBF(4)/water ratio from 0% to 100%). SANS and DSC experiments demonstrated that the bilayer structure and stability were strongly modified by the IL content. Moreover, matching SANS experiments showed that BmimBF(4) molecules prefer to be located inside the DPPC membrane rather than in water.  相似文献   

11.
The triplet N,N-dimethylaminophenyl cation, a highly reactive but chemospecific electrophile, has been used as a probe for characterizing the properties of reaction media for a series of imidazolium ILs. With the N-hexyl-N-methyl imidazolium derivatives (not with the N-butyl analogues), hydrogen transfer leading to the aniline was the main process. Trapping by iodide occurred with an inverse dependence on viscosity. Trapping by pi nucleophiles exhibited a more complex behavior. This was explained by the effect of both the bulk viscosity and the structure of the IL cation on both steps of the reaction, namely, initial electrophilic attack and ensuing cation elimination or nucleophile addition. However, with an excellent nucleophile, such as thiophene, or when the latter step was intramolecular, as with 4-pentenol, the difference was obliterated and trapping became uniform. Incorporation of the probe into the IL cation (through insertion into the C--H bond alpha to the imidazolium ring) was demonstrated, while no addition to the anion tested (including bis(trifluoromethanesulfonimide)) took place.  相似文献   

12.
13.
In this paper, we present experimental results for excitation coefficients of krypton atoms to several Kr and Kr+ excited levels for E/N (electric field to gas particle number density ratio usually in units of Townsend, 1 Td = 10 21 V m2) values from 7 × 10 20 V m2 to above 1 × 10 17 V m2. The data have been obtained in two different parallel plate self-sustained Townsend discharge drift tubes. The spatial distribution of the emission intensities were recorded and then normalized to give excitation coefficients at the anode, by using the electron flux at this point. The values of these coefficients are placed on an absolute scale by using a standard tungsten ribbon lamp calibrated against a primary blackbody radiation standard. The ionization rates at different E/N are obtained from the spatial emission profiles.The data for atomic krypton levels 2p2, 2p3, 2p5, 2p6, 2p7, 2p8, 3p5 and 3p6 (in Paschen notation) were converted to excitation coefficients by using quenching coefficients from the literature. The emission coefficients of eight 4s24p4 (3P)5p levels of Kr+ have also been measured for E/N values from about 1 × 10 18 V m2 up to nearly 8 × 10 18 V m2.  相似文献   

14.
We report measurements of differential and integral cross sections for electron excitation of the Schumann-Runge continuum, longest band, and second band electronic states in molecular oxygen. The energy range of the present study is 15-200 eV, with the angular range of the differential cross section (DCS) measurements from 2 to 130°. A generalized oscillator strength analysis is then employed in order to derive integral cross sections (ICSs) from the corresponding DCSs, and these ICSs are compared with relevant energy and oscillator strength scaled Born cross section (BEf-scaling [Y.-K. Kim, J. Chem. Phys. 126, 064305 (2007)]) results determined as a part of this investigation. Interestingly, while the present Schumann-Runge continuum and second band ICSs were in reasonable agreement with the respective BEf-scaling results, agreement for the longest band was poor below 100 eV with a possible reason for this apparently anomalous behavior being canvassed here. Finally, where possible all present data are compared with the results from earlier measurements and calculations with the level of agreement found being very good in some cases and marginal in others.  相似文献   

15.
The present work describes electron beam induced Ag deposition from [BMIM][BF4] ionic liquid containing AgBF4 on anatase TiO2 surfaces. The procedure is directly performed in the ultra high vacuum chamber of a scanning electron microscope (SEM). Based on the experiments with reference surfaces (Au and amorphous TiO2) that do not show successful Ag deposition, it is proposed that the deposition mechanism is of pseudo-photocatalytic nature.  相似文献   

16.
17.
Oxidative addition of methyl iodide to Vaska’s complex in the ionic liquids 1-butyl-3-methylimidazolium triflate [C4mim][OTf], [C4mim] bis(trifluormethylsulfonyl)imide [Tf2N], and N-hexylpyridinium [C6pyr][Tf2N] occurred cleanly to give the expected Ir(III) oxidative addition product. Pseudo-first order rate constants were determined for the oxidative addition reaction in each solvent ([Vaska’s] = 0.25 mM, [CH3I] = 37.5 mM). The observed rate constants under these conditions were 5-10 times slower than the rate seen in DMF. At high methyl iodide concentrations (>23 mM), the expected first order dependence on methyl iodide was not observed. In each ionic liquid, there was no change in the reaction rates within experimental error over the methyl iodide concentration range of 23-75 mM. At lower methyl iodide concentration, a decrease in rate was observed in [C4mim][Tf2N] with decreasing concentration of methyl iodide.  相似文献   

18.
Trimethylsilyl cellulose (TMSC) can be efficiently synthesized with 1,1,1,3,3,3‐hexamethyldisilazane (HMDS) by applying the ionic liquids (ILs) 1‐ethyl‐3‐methylimidazolium acetate, 1‐ethyl‐3‐methylimidazolium chloride, and 1‐butyl‐3‐methylimidazolium chloride as reaction medium, yielding pure biopolymer derivatives with degrees of substitution (DS) up to 2.89. Cosolvents, for example, chloroform, could be used to adjust the viscosity of the system and to achieve the miscibility of the components. During the synthesis of highly functionalized derivatives precipitation of the TMSC occurred, which simplifies the recycling of the IL. The high tendency of TMSC toward the formation of supermolecular structures was exploited for the formation of nanoparticles studying a simple dialysis process. Amazingly, pure cellulose nanoparticles can be obtained by dissolving TMSC in tetrahydrofurane or N,N‐dimethyl acetamide and dialysis against water. FTIR spectroscopy confirmed the complete removal of the TMS functions during this process. Scanning electron microscopy, dynamic light scattering, atomic force microscopy, and particle size distribution analysis showed that cellulose particles down to a size of 170 nm are accessible in this simple manner. The nanoparticle suspensions exhibit viscosities in the range of water. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4070–4080, 2008  相似文献   

19.
High resolution laser spectroscopy has been applied to study the hyperfine structure of excited energy levels of Thulium I. As part of our aim to complete the fine and hyperfine structure of the Tm I spectra 51 transitions in the visible were measured and precise values for the magnetic dipole hyperfine structure constants A of 24 odd and 19 even levels were determined. In addition, a new energy level of even parity with J = 3/2 is found at 27 509.40 (5)cm?1 using laser induced fluorescence spectroscopy.  相似文献   

20.
Catalytic reactions in ionic liquids   总被引:3,自引:0,他引:3  
The chemical industry is under considerable pressure to replace many of the volatile organic compounds (VOCs) that are currently used as solvents in organic synthesis. The toxic and/or hazardous properties of many solvents, notably chlorinated hydrocarbons, combined with serious environmental issues, such as atmospheric emissions and contamination of aqueous effluents is making their use prohibitive. This is an important driving force in the quest for novel reaction media. Curzons and coworkers, for example, recently noted that rigorous management of solvent use is likely to result in the greatest improvement towards greener processes for the manufacture of pharmaceutical intermediates. The current emphasis on novel reaction media is also motivated by the need for efficient methods for recycling homogeneous catalysts. The key to waste minimisation in chemicals manufacture is the widespread substitution of classical 'stoichiometric' syntheses by atom efficient, catalytic alternatives. In the context of homogeneous catalysis, efficient recycling of the catalyst is a conditio sine qua non for economically and environmentally attractive processes. Motivated by one or both of the above issues much attention has been devoted to homogeneous catalysis in aqueous biphasic and fluorous biphasic systems as well as in supercritical carbon dioxide. Similarly, the use of ionic liquids as novel reaction media may offer a convenient solution to both the solvent emission and the catalyst recycling problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号