首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Phosphate removal from aqueous solution was investigated using ZnCl2-activated carbon developed from coir pith, an agricultural solid waste. Studies were conducted to delineate the effect of contact time, adsorbent dose, phosphate concentration, pH, and temperature. The adsorption equilibrium data followed both Langmuir and Freundlich isotherms. Langmuir adsorption capacity was found to be 5.1 mg/g. Adsorption followed second-order kinetics. The removal was maximum in the pH range 3–10. pH effect and desorption studies showed that adsorption occurred by both ion exchange and chemisorption mechanisms. Adsorption was found to be spontaneous and endothermic. Effect of foreign ions on adsorption shows that perchlorate, sulfate, and selenite decreased the percent removal of phosphate.  相似文献   

2.
The use of rare earths (REs) provides various advantages for removal and recovery of phosphate from water because they have high affinity to form stable complexes with phosphates even at low concentrations. Very low solubility of rare earth phosphate REPO4 in water was expected to induce a high phosphate adsorption rate and capacity. In this study, layered rare earth hydroxides, l-RE(OH)3 (RE = Sm, Gd, Er, and Y), have been employed to remove or recover phosphate from aqueous solution. This layered polymorph of l-RE(OH)3, which is composed of hydroxocation layers, exhibited a high point of zero charge (pHpzc > 10) and significantly enhanced adsorptive ability for phosphates over a wide pH range. The isotherm and kinetics of phosphate adsorption on l-RE(OH)3 were explained dominantly by the Langmuir isotherm model and pseudo-second-order kinetic model, respectively. A strong dependence of isotherm and kinetic parameters on RE demonstrated that the adsorption of phosphate on l-RE(OH)3 is a chemisorption dominated process involving the replacement of –OH by phosphate ion to be included into the coordination polyhedra of RE. The desorption of phosphate from l-RE(OH)3 was slow but the desorption efficiency for all RE members was higher than 97% in a 1.0 M NaOH solution after 4 days at room temperature. Considering high capacity and stability as well as no significant interference in recovery of phosphate from waters containing common competing anions, this rare earth adsorbent series is proposed as a promising alternative for efficient and sensitive phosphate recovery from natural and wastewaters.  相似文献   

3.
磷酸铝吸附除水中氟的研究   总被引:7,自引:0,他引:7  
采用静态吸附法研究了比表面为308m2/g的无定形磷酸铝吸附除氟性能,研究了接触时间、pH值、吸附剂量等对吸附的影响。结果表明,磷酸铝吸附除氟高效、迅速,30min内可以接近最大吸附量。对含氟50mg/g的溶液,优化条件下的最大除氟率约93%。研究了吸附与溶液pH的关系,得到了优化pH值并解释了吸附机理。吸附的最佳pH值约为5.5。用拟二级动力学方程描述了吸附速率并计算了速率常数。用Langmuir方程拟合了吸附等温线,计算的饱和吸附量为53.5mg/g。吸附剂量对分配系数的影响表明吸附剂表面是不均匀的。  相似文献   

4.
将改性高粱秸秆用于磷酸根的吸附,研究了时间、酸度、温度以及改性高粱秸秆用量等因素对其吸附性能的影响。结果表明,在常温下,改性高粱秸秆对磷酸根具有良好的吸附性能,吸附时间快。改性高粱秸秆对磷酸根的吸附符合Langmuir和Freundli-ch吸附等温方程及准二级动力学方程,吸附过程以单分子层物理吸附为主。  相似文献   

5.
纯相钙铝层状双氢氧化物对磷的吸附特性   总被引:2,自引:0,他引:2  
采用乙醇辅助液相共沉淀法制备了纯相Ca-Al-LDH层状双金属氢氧化物,考察了Ca-Al-LDH的投加量、吸附时间、pH值、无机电解质(Na2CO3 ,KCl ,Na2SO4,KNO3)和温度等因素对磷吸附的影响,结果表明,纯相Ca-Al-LDH对磷酸根离子具有很好的吸附性能,最大饱和吸附量可达160.78 mg/g,当pH值为5.1、温度为45 ℃、吸附时间为600 min、LDH投加量为0.6 g/L、磷初始浓度为80 mg/L时,磷的去除率高达95.88%;无机阴离子会抑制磷在吸附剂上的吸附,当Cl-浓度从2.5 g/L升高到25 g/L时,Ca-Al-LDH对磷酸盐的最大饱和吸附量从69.96 mg/g降至53.18 mg/g,降低了23.99%;当SO42-浓度从2.5 g/L升高到25 g/L时,Ca-Al-LDH对磷酸盐的最大饱和吸附量降低了24.79%,其它无机阴离子对磷在吸附剂上的吸附也有一定的影响。 Ca-Al-LDH对水中磷的吸附符合二级动力学方程和Langmuir等温模型。 采用扫描电子显微镜、傅里叶变换红外光谱仪和X射线衍射仪等技术手段对制备的纯相Ca-Al-LDH及其吸附磷酸根后的产物进行表征,揭示了Ca-Al-LDH对磷酸根的吸附可能是静电吸引、化学吸附和阴离子插层等过程协同作用的吸附机理。  相似文献   

6.
Low cost biosorbents have gained considerable importance in the past decade for their removal efficiency of contaminants from wastewaters. Both removal and recycle of the phosphate anion through benign methods are relevant to sustain a steady balance. An attempt has been made to give a comprehensive insight into several physico-chemical factors leading to the adsorption process by various natural biosorbents. Few important facts regarding phosphate biosorption have emerged out as key points viz., pH < pHpzc, high uptake capacity; correlation with Langmuir isotherm model and pseudo second order kinetics; decrease of uptake capacity with longer contact time; enhancement of adsorption process in presence of counter ions, etc. Also, it was noted that the adsorbate: adsorbent ratio is crucial for the removal efficiency of the phosphate ions. A few biosorbents exhibit removal efficiency to a large extent (>95%) although even higher adsorption capacity can be obtained by the modification of the adsorbents. Commercial biomatrices like biochars have shown wide applications for removal of phosphates. Magnetic biochars have shown special performance owing to the presence of iron and a porous nature of their structure. Desorption studies revealed that almost complete recovery of the phosphate ion is possible through simple ion exchange mechanism.  相似文献   

7.
The removal of phenol from aqueous solution was evaluated by using a nonfunctionalized hyper-cross-linked polymer Macronet MN200 and two ion exchange resins, Dowex XZ (strong anion exchange resin) and AuRIX 100 (weak anion exchange). Equilibrium experimental data were fitted to the Langmuir and Freundlich isotherms at different pHs. The Langmuir model describes successfully the phenol removal onto the three resins. The extent of the phenol adsorption was affected by the pH of the solution; thus, the nonfunctionalized resin reported the maximum loading adsorption under acidic conditions, where the molecular phenol form predominates. In contrast both ion exchange resins reported the maximum removal under alkaline conditions where the phenolate may be removed by a combined effect of both adsorption and ion exchange mechanisms. A theoretical model proposed in the literature was used to fit the experimental data and a double contribution was observed from the parameters obtained by the model. Kinetic experiments under different initial phenol concentrations and under the best pH conditions observed in the equilibrium experiments were performed. Two different models were used to define the controlling mechanism of the overall adsorption process: the homogeneous particle diffusion model and the shell progressive model fit the kinetic experimental data and determined the resin phase mechanism as the rate-limiting diffusion for the phenol removal. Resins charged after the kinetic experiments were further eluted by different methods. Desorption of nonfunctionalized resin was achieved by using the solution (50% v/v) of methanol/water with a recovery close to 90%. In the case of the ion exchange resins the desorption process was performed at different pHs and considering the effect of the competitive ion Cl. The desorption processes were controlled by the ion exchange mechanism for Dowex XZ and AuRIX 100 resins; thus, no significant effect for the addition of Cl under acidic conditions was observed, while under alkaline conditions the total recovery increased, specially for Dowex XZ resin.  相似文献   

8.
羧基化石墨烯对4种离子型染料的吸附脱色   总被引:1,自引:0,他引:1  
吕莎莎  危晶  江峰  王邃 《应用化学》2013,30(10):1215-1221
合成的羧基化石墨烯(G-COOH)用FT-IR进行表征,并对G-COOH用于水溶液中甲基紫、中性红、灿烂黄和茜素红4种离子型染料的吸附性能进行了研究。 考察了吸附剂用量、吸附时间、初始浓度以及溶液pH值等条件对吸附效果的影响。 同时,研究了甲基紫染料的脱附性能,结果表明,用NaOH/EtOH混合溶液洗脱甲基紫,洗脱率可达88.2%,洗脱后的G-COOH可再利用。 从热力学角度探讨得出,G-COOH对阳离子染料甲基紫和中性红的吸附行为能够较好的符合Langmuir等温吸附模型,而对阴离子染料灿烂黄和茜素红的吸附行为则能够较好的符合Freundlich等温吸附模型,计算的吸附参数表明,G-COOH对4种染料的吸附过程容易进行。 动力学研究表明,G-COOH对4种离子型染料的吸附行为均能较好的符合准二级吸附模型。 该实验研究表明,在处理染料废水时,G-COOH为相当优异的吸附剂。  相似文献   

9.
The adsorption kinetics of phosphate and arsenate on goethite is studied and compared. Batch adsorption experiments were performed at different adsorbate concentrations, pH, temperatures and stirring rates. For both oxoanions the adsorption rate increases by increasing adsorbate concentration, decreasing pH and increasing temperature. It does not change by changing stirring rate. The adsorption takes place in two processes: a fast one that takes place in less than 5 min and a slow one that takes place in several hours or more. The rate of the slow process does not depend directly on the concentration of phosphate or arsenate in solution, but depends linearly on the amount of phosphate or arsenate that was adsorbed during the fast process. Apparent activation energies and absence of stirring rate effects suggest that the slow process is controlled by diffusion into pores, although the evidence is not conclusive. The similarities in the adsorption kinetics of phosphate and arsenate are quantitatively shown by using a three-parameters equation that takes into account both the fast and the slow processes. These similarities are in line with the similar reactivity that phosphate and arsenate have in general and may be important for theoretical and experimental studies of the fate of these oxoanions in the environment.  相似文献   

10.
The adsorption characteristics of inosine from fermentation solution on anion exchange resin under the condition of different pH,resin type are investigated.Besides,the desorption conditions are studied under different temperature.The adsorption and desorption mechanism are described to obtain the optimum technological condition of inosine extraction.  相似文献   

11.
Single‐, double‐, and multi‐walled carbon nanotubes (SWCNTs, DWCNTs, and MWCNTs), and two oxidized MWCNTs with different oxygen contents (2.51 wt % and 3.5 wt %) were used to study the effect of the wall number and surface functionalization of CNTs on their adsorption capacity and adsorption–desorption hysteresis for heavy metal ions (NiII, CdII, and PbII). Metal ions adsorbed on CNTs could be desorbed by lowering the solution pH. Adsoprtion of heavy metal ions was not completely reversible when the supernatant was replaced with metal ion‐free electrolyte solution. With increasing wall number and amount of surface functional groups, CNTs had more surface defects and exhibited higher adsorption capacity and higher adsorption–desorption hysteresis index (HI) values. The coverage of heavy metal ions on the surface of CNTs, solution pH, and temperature affect the metal ion adsorption–desorption hysteresis. A possible shift in the adsorption mechanism from mainly irreversible to largely reversible processes may take place, as the amount of metal ions adsorbed on CNTs increases. Heavy metal ions may be irreversibly adsorbed on defect sites.  相似文献   

12.
Acid treated spent bleaching earth was studied to assess its capacity for the adsorption of fluoride from aqueous solutions. Adsorption isotherms have been modeled by Langmuir and Freundlich equations and isotherm constants for both isotherms were calculated. The effect of the adsorbent concentration on the adsorption was studied. The dependence of the adsorption of fluoride on the pH of the solution has been studied to achieve the optimum pH-value and a better understanding of the adsorption mechanism. It has been found that maximum adsorption of fluoride from aqueous solutions takes place at pH-value of 3.5. Second-order equation was used to describe the adsorption rate of fluoride and adsorption rate constant was calculated. Intraparticle and mass transfer coefficients were calculated. The influence of addition of the anions on the adsorption of fluoride was also studied to simulate industrial waste waters and the addition of anions decreased the adsorption of fluoride on the acid treated spent bleaching earth (SBE).  相似文献   

13.
A Zn/Al hydrotalcite-like compound (HTlc) was prepared by co-precipitation (at constant pH) method and was characterized by XRD, TG/DTA, FTIR, and BET surface area. The ability of Zn/Al oxide to remove F- from aqueous solution was investigated. All the adsorption experiments were carried out as a function of time, pH, concentration of adsorbate, adsorbent dose, temperature etc. It was found that the maximum adsorption takes place within 4 h at pH 6.0. The percentage of adsorption increases with increase in the adsorbent dose, but decreases with increase in the adsorbate concentration. From the temperature variation it was found that the percentage of adsorption decreases with increase in temperature, which shows that the adsorption process is exothermic in nature. The adsorption data fitted well into the linearly transformed Langmuir equation. Sulfate and phosphate were found to have profound effects on fluoride removal. Thermodynamic parameters such as DeltaG0, DeltaH0, and DeltaS0 were calculated. The negative value of DeltaH0 indicates that the adsorption process is exothermic. The apparent equilibrium constants (Ka) are also calculated and found to decrease with increase in temperature. With 0.01 M NaOH the adsorbed F- could be completely desorbed from Zn/Al oxide in 6 h.  相似文献   

14.
The mean time spent by a macromolecule at a solid/liquid interface is analyzed in the region of adsorption saturation. The method consists of carrying out preliminary adsorption with radioactively labeled high-molecular-weight polyacrylamide and subsequently exposing the surface to a solution of unlabeled polyacrylamide. It was found that, apart from a small fraction of polymers “loosely” attached, the exchange between labeled and unlabeled polymers takes place at the interface at a very slow rate. Furthermore, desorption of surface molecules occurs only in the presence of a solution, and then the rate of desorption increases proportionally to the number of molecules in the solution. A mechanism based on a bimolecular chemical exchange process is proposed.  相似文献   

15.
Adsorption of polyetheramines on montmorillonite at high pH   总被引:1,自引:0,他引:1  
Adsorption of a series of polyetheramines on montmorillonite in aqueous suspension was investigated by a range of methods: elemental analysis, atomic absorption spectroscopy, measurement of pH, conductivity and electrophoretic mobility, and small-angle X-ray scattering. Adsorption proceeds through an ion exchange mechanism. The maximum surface coverage attained is equivalent to about 40% of the cationic exchange capacity of the clay. Adsorption of the poly(oxypropylene) block adjacent to the amine group onto the clay surface may contribute to this. Surprisingly the adsorption takes place at pH conditions well above the pK(a) of the amine surfactants, where they are not protonated in the bulk solution. The surface coverage as a function of molar mass broadly agrees with predictions assuming adsorbed polymers adopt a densely packed mushroom configuration at the clay surface.  相似文献   

16.
The adsorption of lignosulfonate onto a commercial, modified lead zirconate titanate (PZT-PNN) powder in aqueous suspension and its effect on particle zeta potential and suspension rheology were investigated as functions of pH and lignosulfonate dosage. Langmuir analysis of the adsorption data demonstrated that a significant component of the overall driving force of adsorption at all pH values examined was specific (nonelectrostatic) bonding. Electrostatic bonding provided a significant contribution to adsorption at pH 6.0, but diminished at lower pH owing to decreased lignosulfonate ionization and at higher pH due to decreased positive surface site concentration on the PZT-PNN. The affinity of adsorption was highest at pH 6.0 because the electrostatic component was maximal at this pH. The zeta potential magnitude increased and the apparent viscosity decreased with increasing pH and increasing lignosulfonate dosage, up to approximately monolayer coverage. The lignosulfonate dosage required for monolayer coverage decreased with increasing pH owing to increasing lignosulfonate expansion and the decrease in concentration of positive surface sites on the PZT-PNN. Suspension stabilization was considered to occur by an electrosteric mechanism.  相似文献   

17.
The objective of this research is to produce high surface area-activated carbon derived from cotton linter fibers by fused NaOH activation and to examine the feasibility of removing oxytetracycline (OTC) from aqueous solution. The cotton linter fibers activated carbon (CLAC) was characterized by N(2) adsorption/desorption isotherms, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The results showed that CLAC had a predominantly microporous structure with a large surface area of 2143 m(2)/g. The adsorption system followed pseudo-second-order kinetic model, and equilibrium was achieved within 24h. The equilibrium data were described well by Langmuir isotherm. Thermodynamic study showed that the adsorption was exothermic reaction at low concentration and became endothermic nature with the concentration increasing. Competitive adsorption took place in the weakly acidic to neutral conditions. Under the strong acidity or strong alkaline condition, the adsorption of the oxytetracycline was hindered by electrostatic repulsion. The adsorption mechanism depended on the pH of the solutions as well as the pK(a) of the oxytetracycline.  相似文献   

18.
Removal of phosphate is necessary to prevent eutrophication and remediate other environmental issues. In this study, branched polyethyleneimine (bPEI) was grafted onto rice husk porous silica (RSi-bPEI) to enhance the selective adsorption of phosphate. The adsorption tests for phosphate were performed at various conditions to assess the effects of pH, dose, initial concentration, and contact time. As confirmed by FTIR-spectra, it was proposed that phosphate species anchored onto RSi-bPEI through ion-exchange and hydrogen bonding. The increase in positive charge of RSi-bPEI, which was due to the presence of protonated amine, played a key role in offering more adsorption sites to augment the adsorption by means of electrostatic attraction. Consequently, RSi-bPEI exhibited qm of 123.46 mg g−1, which was two-fold better than that of RSi. The adsorption behavior was best described by Langmuir isotherms and the pseudo-second-order kinetics model. Based on the competitive study, the co-existing anions did not interfere with adsorption due to the fact that phosphate could form both inner and outer sphere complexes. In addition to the high performance, high efficiency in wide pH range as well as good stability and easy recyclability are the other promising criteria of RSi-bPEI that promote its practical usage in treating phosphate-induced eutrophication of water bodies.  相似文献   

19.
Adsorption-desorption isotherms of bovine beta-lactoglobulin A (beta-lact A) on a weakly hydrophobic stationary phase (C1-ether) were measured by frontal analysis. The adsorption isotherms obtained at different pH were found to be dramatically different in shape, column capacity and desorption reversibility. At pH 4.5, an S-shaped adsorption isotherm was observed whereas at pH 6.0 a Langmuir isotherm was found. In addition, the desorption isotherm at pH 6.0 was found to overlap with the adsorption isotherm, and the adsorption-desorption process of beta-lact A under this condition could be characterized by a fully reversible Langmuir model. The desorption isotherm at pH 4.5, however, did not retrace the adsorption isotherm, resulting in hysteresis loops. A higher aggregate (tetramer) of beta-lact A is shown to be in an equilibrium with the beta-lact A protomer (dimer) at pH 4.5 whereas the dimer alone is predominant at pH 6.0. It is further shown that changes in the absorption coefficient between the adsorption and the desorption cycles for the tetramer at pH 4.5 can account for the hysteresis. The results demonstrate that pH can be a sensitive parameter in protein adsorption isotherm behavior and ultimately the behavior of species in preparative-scale chromatography.  相似文献   

20.
Chitosan tripolyphosphate (CTPP) beads were prepared at two different cross-linking densities and adsorption of Cr(III) onto it were studied as a function of different operational parameters such as solution pH, equilibration time and initial Cr(III) ion concentration. Higher cross-linked beads were found to have more adsorption capacity at all the experimental pH employed (pH = 3–5), whereas adsorption capacity is found to increase with increase in pH. Adsorption data were analyzed using Langmuir and Freundlich isotherm models. Langmuir model is found be more suitable to explain the experimental results with a monolayer adsorption capacity of 469.5 mg/g. Among the kinetic models used, pseudo-second order kinetic model could best describe the adsorption process. Competition experiments done in presence of Na(I), Mg(II), Ca(II), Al(III) and Fe(III) revealed that, except in the case of Al(III), adsorption of Cr(III) is not significantly affected by the presence of foreign cations. NaCl is found to be a suitable leaching agent for the desorption of adsorbed Cr(III) from CTPP beads. FTIR spectroscopic investigations confirmed that phosphate groups are the principal binding site responsible for the sorption of Cr(III) onto CTPP beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号