首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the surface ordering of a synthetic, asymmetric, fan-shaped dendrimer containing a carboxyl core and perfluorinated tails which was obtained by the esterification of the intermediary. X-ray diffraction patterns and transmission electron microscopy (TEM) images show the molecules self-assemble into a hexagonal, cylindrical mesophase. Surface pressure-area isotherms and Brewster angle microscopy measurements show the molecule forms a stable monolayer at the air-water interface with a single phase transition. As a condensed monolayer, the perfluorinated tails are well-packed with hexagonal symmetry with (10) spacing of approximately 0.5 nm from molecular-scale atomic force microscopy (AFM) images. Such dense molecular-scale packing has not been observed in other dendritic molecules thus far. Compared to the case of conventional dendritic molecules with alkyl tails, these molecules occupy a much smaller molecular area due to the strong microphase separation between the carboxylic core and perfluorinated tails at the air-water interface. After monolayer collapse, the irregular islands with terrace morphology are observed in contrast with conventional alkyl-terminated self-assembled dendritic molecules where irregular islands do not appear. The interfacial and internal structure of every terrace shows planar columnar morphology from AFM and TEM imaging. From these results, we discuss the stability of perfluorinated, self-assembled dendrimers on water, as well as how to generate planar morphology on a hydrophilic surface.  相似文献   

2.
The ability of electric fields to align nonpolar semiconducting molecules was demonstrated using hexa(para-n-dodecylphenyl)hexabenzocoronene (HBC-PhC12) as a model compound. A solution of HBC-PhC12 was applied to a glass surface by drop-casting and the molecules were oriented into highly ordered structures by an electric field during solvent evaporation. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) showed a long-range alignment where the disclike molecules were organized in columns perpendicular to the direction of the imposed electric field. The high anisotropy of the uniaxially aligned films was characterized by cross-polarized light microscopy. The birefringence of the HBC-PhC12 films was related to the presence of extended domains of unidirectionally aligned columns in which the aromatic cores of the HBC-PhC12 molecules were perpendicular to the columnar axis. The packing and the arrangement of the molecules in the field-force ordered films were proven by electron diffraction and X-ray analyses.  相似文献   

3.
Nanostructures of polyaniline (PAni) and polypyrrole (PPy) with controlled morphologies have been synthesized on atomically flat surfaces using adsorbed surfactant molecules as templates. Atomic force microscopy (AFM) has been used to investigate polymer film formation on highly oriented pyrolytic graphite (HOPG) and chemically modified HOPG. Morphological control over the resulting polymer film is possible by the addition of coadsorbing molecules, manipulation of the length of the surfactant hydrophobe, or by changing the surface chemistry of the adsorbing substrate. Phase transitions between spheres, cylinders/wires, and featureless films have been observed which exactly parallel transitions between spheres, cylinders, and flat layers in the adsorbed surfactant. Parallel arrays of PAni nanowires can be synthesized with alignment evident over large areas in a simple self-assembly technique in which fabrication and arrangement take place simultaneously. Such a technique in which one can engineer sub-100-nm-ordered nanoscale pi-conjugated polymer structures of a desired shape by a simple self-assembly process presents potential as templates, sensors, and microelectronic devices.  相似文献   

4.
We provide a detailed investigation of the second-order nonlinear optical and structural properties of Langmuir-Blodgett (LB) films of nonracemic thiohelicenebisquinone (THBQ). We prepare both X- and Y-type films of different thicknesses and characterize them using optical second-harmonic generation and atomic-force microscopy (AFM). We find that the overall nonlinear properties of the samples are essentially independent of the film thickness and the deposition type and arise from susceptibility tensor components associated with chirality. Both X- and Y-type films can be described by D2 symmetry, which is a higher symmetry than the previously assumed C2 of LB films of THBQ and a similar helicenebisquinone (HBQ). However, the two types of films are shown to differ significantly with respect to the orientation of the in-plane axis. For Y type, the axis follows the direction of vertical sample deposition, but for X type, the direction of the axis varies randomly and significantly between different samples. The Y-type samples are therefore more ordered than the X-type samples. This was confirmed by AFM measurements in which the Y type exhibits uniform ordering into columnar structures. Similar structures in X type, on the other hand, are shorter and more randomly oriented, like those earlier observed for racemic samples of HBQ [Verbiest, T., et al. Science 1998, 282, 913]. The common nonlinear properties and different high-level ordering observed here for two different types of nonracemic samples reinforces that the nonlinearity of THBQ (and probably HBQ, as well) originates from the low-level columnar aggregation of the molecules with the higher-level structures playing a lesser role. In addition, within the columns, the molecules likely assume fairly random azimuthal orientations so that the columns themselves exhibit approximate Dinfinity symmetry.  相似文献   

5.
Hexakis (4-iodophenyl)-peri-hexabenzocoronene (5), a novel functionalizable mesogenic building block, was prepared by rational multistep synthesis. Although sparingly soluble in common solvents, it can be obtained in pure form and then functionalized via Hagihara-Sonogashira coupling to give a series of highly ordered columnar liquid crystalline molecules 14a-c. The total synthesis involves five 6-fold transformations, all in excellent to near quantitative isolated yields. Their thermotropic liquid crystalline behavior was studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide-angle X-ray diffraction (WAXD). Compared to the normal alkyl-subsituted hexabenzocoronenes (HBCs), 14a-c exhibit more highly ordered columnar mesophases, including three-dimensionally ordered superstructures (helical columnar mesophase). These could arise from additional intracolumnar pi-pi interactions between, and space-filling requirements introduced by, the rigid-rod side groups. Atomic force microscopy (AFM) revealed self-assembled bundles of columnar aggregates in spin-coated films and isolated several-micron-long nanoribbons composed of a defined number of columns in drop cast films.  相似文献   

6.
The mulitstage preparation of densly packed thienylene-phenylene dendrimer 15 comprising 42 thiophene and 7 benzene units arranged in a hexagonal “snowflake” fashion is described. The desired three-dimensionality is induced through steric repulsion of the peripheral hexa(thienyl)benzene units. The molecular geometry of individual dendrimers was supported by quantum chemical calculations, whereby atomic force microscopy gave evidence for spontaneous ordering of the molecules on a graphite surface by the formation of stable nanosized edge-on oriented columns.  相似文献   

7.
We show that thin films grown by vacuum sublimation, or formed by melted powders, of semiconductor alpha-quinquethiophene (T5) exhibit a hierarchical self-affinity organization that spans scales from tens of nanometers to hundreds of micrometers. T5 organization was investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), and optical microscopy. XRD showed that vacuum-evaporated T5 films were characterized by a preferred orientation of the h00 planes parallel to the glass substrate. Melting of the films followed by rapid quenching to room temperature led to the formation of micrometer-sized, single-crystal-like structures, characterized by uniaxially aligned stripes. XRD proved that the melting-quenching process enhanced molecular ordering and increased the size of domains with the molecule's long axes tilted by about 65 degrees with respect to the substrate plane and piled up side-by-side along parallel columns. AFM measurements on the melt-quenched structures showed that a hierarchical architecture was built by reiteration across multiple length scales of the same recurring motif. Because of the tendency of T5 to form highly crystalline vacuum-evaporated thin films, a field-effect hole mobility comparable to state-of-the-art FET mobility of alpha-sexithiophene films was reached, without any attempt to optimize deposition conditions.  相似文献   

8.
The synthesis of surface-confined, nanometer-sized dendrimers and Au nanoparticles was performed starting from single Pd(II) pincer adsorbate molecules (10) embedded as isolated species into 11-mercapto-1-undecanol and decanethiol self-assembled monolayers (SAMs) on gold. The coordination of monolayer-protected Au nanoclusters (MPCs) bearing phosphine moieties at the periphery (13), or dendritic wedges (8) having a phosphine group at the focal point, to SAMs containing individual Pd(II) pincer molecules was monitored by tapping mode atomic force microscopy (TM AFM). The individual Pd(II) pincer molecules embedded in the decanethiol SAM were visualized by their coordination to phosphine MPCs 13; isolated objects with a height of 3.5 +/- 0.7 nm were observed by TM AFM. Reaction of these embedded Pd(II) pincer molecules with the dendritic wedge 8 yielded individual molecules with a height of 4.3 +/- 0.2 nm.  相似文献   

9.
The structural evolution and thermal stability of perfluoro-pentacene (PF-PEN) thin films on Ag(111) have been studied by means of low-temperature scanning tunnelling microscopy (STM), low-energy electron diffraction (LEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). Well-defined monolayer films can be prepared by utilizing the different adsorption energy of mono- and multilayer films and selectively desorbing multilayers upon careful heating at 380 K, whereas at temperatures above 400 K, a dissociation occurs. In the first monolayer, the molecules adopt a planar adsorption geometry and form a well-ordered commensurate (6 × 3) superstructure where molecules are uniformly oriented with their long axis along the <110> azimuth. This molecular orientation is also maintained in the second layer, where molecules exhibit a staggered packing motif, whereas further deposition leads to the formation of isolated, tall islands. Moreover, on smooth silver surfaces with extended terraces, growth of PF-PEN onto beforehand prepared long-range ordered monolayer films at elevated temperature leads to needle-like islands that are uniformly aligned at substrate steps along <110> azimuth directions.  相似文献   

10.
IntroductionOver the past few years, wide band gap semicon-ductors have attracted considerable attention because oftheir high commercial demand for the preparation ofblue and UV light emitters. The most promising amongall the known materials used for this…  相似文献   

11.
We report here a multistep route for the immobilization of DNA and proteins on chemically modified gold substrates using fourth-generation NH(2)-terminated poly(amidoamine) dendrimers supported by an underlying amino undecanethiol (AUT) self-assembled monolayer (SAM). Bioactive ultrathin organic films were prepared via layer-by-layer self-assembly methods and characterized by fluorescence microscopy, variable angle spectroscopic ellipsometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and attenuated total internal reflection Fourier transform infrared spectroscopy (ATR-FTIR). The thickness of the AUT SAM base layer on the gold substrates was determined to be 1.3 nm from ellipsometry. Fluorescence microscopy and AFM measurements, in combination with analyses of the XPS/ATR-FTIR spectra, confirmed the presence of the dendrimer/biopolymer molecules on the multilayer sensor surfaces. Model proteins, including streptavidin and rabbit immunoglobulin proteins, were covalently attached to the dendrimer layer using linear cross-linking reagents. Through surface plasmon resonance measurements, we found that sensor surfaces containing a dendrimer layer displayed an increased protein immobilization capacity, compared to AUT SAM sensor surfaces without dendrimer molecules. Other SPR studies also revealed that the dendrimer-based surfaces are useful for the sensitive and specific detection of DNA-DNA interactions. Significantly, the multicomponent films displayed a high level of stability during repeated regeneration and hybridization cycles, and the kinetics of the DNA-DNA hybridization process did not appear to be influenced by surface mass transport limiting effects.  相似文献   

12.
An inkjet printing procedure for depositing films of carbon nanotubes (CNTs) that exhibit a very high degree of long-range mutual alignment as well as a controlled orientation with respect to the printed geometry is presented. CNT self-assembly was induced by the intrinsic lyotropic liquid crystallinity of CNT suspensions. Sufficient concentrations are reached by matching the inkjet deposition rate to the numerically modeled local evaporation rate of the printed feature and enable the CNT suspension to be printed using standard inkjet printing. Surface alignment was verified using scanning electron microscopy (SEM) and polarized light microscopy. In addition, the bulk morphology was investigated and found to be composed of stacked planar layers that did not necessarily have the same long-range orientation found on the surface. The bulk morphology was characterized by removing layers through an elastomeric peeling process and by observing cross sections of the films using SEM. CNT concentration and length were spanned experimentally, and it was found that very short and very long CNTs as well as low concentration suspensions did not yield long-range alignment.  相似文献   

13.
《Liquid crystals》1997,22(3):341-348
2-Deoxyguanosine 3 5-cyclic monophosphate forms in water cholesteric and hexagonal columnar mesophases. The polymorphic behaviour and the structural building blocks of the liquid crystalline phases, as determined by optical microscopy, CD spectroscopy and X-ray diffraction, are comparable to those found with all the deoxyguanylates investigated so far (in particular with deoxuguanosine 5- and 3-monophosphate). The present results show that the formation of a stacked array of planar G-tetramers, a necessary condition for the existence of the columnar mesophases, occurs even in the absence of hydrogen bonding groups linking the molecules along the length of the columns.  相似文献   

14.
Strong hydrogen bonding and pi-pi stacking between 1-pyrylphosphonic acid (PYPA) molecules were exploited to create self-assembled two-dimensional supramolecular structures. Polycrystalline films of these laminate crystalline PYPA bilayers were easily deposited onto the solid supports through a simple spin-coating technique. Atomic force microscopy (AFM), scanning tunneling microscopy (STM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption, and fluorescence spectroscopy reveal that processing parameters, such as solvent, concentration, and surface of the substrate, are critical factors in determining the final morphology of the stacked film. Robust laminate structures could be obtained only when short alkyl chain protic solvents (methanol or ethanol) and a nonhydrophobic substrate surface were used. Polycrystalline films were formed through the nucleation and growth of PYPA molecules into laminate structures at the air/solvent interface before they land on the substrate during the spin-coating process. These films possess good mechanical properties and were easily transferred onto a SiO2/Si substrate that was patterned with Au electrodes without breaking their crystalline structures. The successful transfer of the laminate crystals allows us to probe their electrical properties through a field effect transistor device. A gating effect on the charge transport of the stacked films indicates that PYPA laminate crystal possesses p-typed semiconductor characteristics.  相似文献   

15.
The morphology of the composite film of organic semiconductors determines the properties and performances of devices to a large extent. In this work, we present a combined AFM and STM study on the interfacial structures of CuPcOC8 and CuPcOC8/PmPV composite films on graphite surface. For CuPcOC8 thin films, the face-on epitaxial growth of CuPcOC8 could persist within 3 to 5 monolayers and the formation of π-π stacked columns will occur with edge-on configuration when the film thickness further increases. For the CuPcOC8/PmPV composite film with 1:1 weight ratio, STM results reveal a preferential adsorption of PmPV on graphite surface, while AFM results indicate the phase segregation in the upper layer. STM also reveals in the molecular scale good compatibility of CuPcOC8 with PmPV.  相似文献   

16.
Optical microscopy, NMR and X-ray measurements are presented for four chromonic lyomesogens derived from 9-xanthone. The measurements provide details about the mesogen-water binary phase diagrams of the four compounds as well as quantitative information about the ordering and structural parameters of the mesophases. All four systems exhibit peritectic phase diagrams with a nematic (N) phase at low mesogen concentration and a hexagonal (H) phase at high concentration. The results are consistent with previously suggested models for chromonic lyomesophases in which columnar aggregates are formed by stacked mesogenic molecules. In the N phase these columns are parallel to the director but are otherwise randomly distributed in the bulk solvent, while in the H phase they form a two dimensional hexagonal array.  相似文献   

17.
We studied the changes in the higher-order structure of a megabase-size DNA (S120-1 DNA) under different spermidine (SPD) concentrations through single-molecule observations using fluorescence microscopy (FM) and atomic force microscopy (AFM). We examined the difference between the folding transitions in S120-1 DNA and sub-megabase-size DNA, T4 DNA (166 kbp). From FM observations, it is found that S120-1 DNA exhibits intra-chain segregation as the intermediate state of transition, in contrast to the all-or-none nature of the transition on T4 DNA. Large S120-1 DNA exhibits a folding transition at lower concentrations of SPD than T4 DNA. AFM observations showed that DNA segments become aligned in parallel on a two-dimensional surface as the SPD concentration increases and that highly intense parallel alignment is achieved just before the compaction. S120-1 DNA requires one-tenth the SPD concentration as that required by T4 DNA to achieve the same degree of parallel ordering. We theoretically discuss the cause of the parallel ordering near the transition into a fully compact state on a two-dimensional surface, and argue that such parallel ordering disappears in bulk solution.  相似文献   

18.
ABSTRACT

The properties of the thin films of liquid crystal (LC) molecules can be governed easily by external fields. The anisotropic structure of the LC molecules has a large impact on the electrical and optical properties of the film. The Langmuir monolayer (LM) of LC molecules at the air–water interface is known to exhibit a variety of surface phases which can be transferred onto a solid substrate using the Langmuir?Blodgett (LB) technique. Here, we have studied the LM and LB films of asymmetrically substituted bent-core LC molecules. The morphology of LB film of the molecules is found to be a controlling parameter for aligning bulk LC in the nematic phase. It was found that the LB films of the bent-core molecules possessing defects favour the planar orientation of nematic LC, whereas the LB films with fewer defects show homeotropic alignment. The defect in LB films may introduce splay or bend distortions in the nematic near the alignment layer which can govern the planar alignment of the bulk LC. The uniform layer of LB film facilitates the molecules of nematic to anchor vertically due to a strong van der Waals interaction between the aliphatic chains leading to a homeotropic alignment.  相似文献   

19.
Stacking of main chain-crown ether polymers in thin films   总被引:1,自引:0,他引:1  
Thin films (9-70 nm) of a series of polymers containing in the main chain dibenzo-18-crown-6 ether unit (DB18C6) linked to an aliphatic spacer of different length (10C and 14C) and nature have been prepared, from chloroform solutions, by spin coating on a silicon substrate. The quality and homogeneity of the polymer coatings was revealed by their reflectivity spectra and atomic force microscopy (AFM). The grazing incidence small-angle X-ray scattering (GISAXS) patterns show an out-of-plane structure correlation (interference maximum near the horizon) of scale size related to the polymer repeating unit length. Above this Bragg reflection, the shape of the scattering observed, in the GISAXS pattern, reveals an orientation of the stacked molecular columns in the coated polymer. A thermal treatment of the samples improves the nanostructure by increasing the lamellar coherence size (in y-direction) as well as the vertical orientation of the molecular columns.  相似文献   

20.
《Supramolecular Science》1998,5(5-6):649-655
Liquid crystal (LC) alignment techniques based on various kinds of ultrathin organized molecular films are reviewed. The mechanisms of LC alignment on the organized films are discussed. For the homeotropic alignment of LCs the main anchoring mechanism is due to the dipole–dipole interaction between polar groups of an aligning agent and LC molecules while the homogeneous alignment is mainly attributed to the orientation of polymer chains or polymer aggregates. An experimental system for an anchoring transition induced by a conformation change of aligning molecules is introduced. Finally the AFM experimental observations on the rubbed polymer films and its mechanisms are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号