首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gelreactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom transfer radicalpolymerization (ATRP) of styrene, in the presence of citric acid (CA) as non-surfactant template or pore-forming agent andfollowed by ethanol extraction to remove template molecules. The materials were characterized by infrared spectroscopy(IR), N_2 adsorption-desorption measurements, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA) andtransmission electron microscopy (TEM). The results indicate that the materials prepared with 50 wt%-60 wt% templatecontents have average pore sizes of 2-3 nm and large surface areas (ca. 886 m~2/g) as well as high pore volumes (ca.0.53 cm~3/g). The mesoporosity arises from interconnected channels and pores with disordered arrangements. The porediameters and pore volumes increase as the template content is increased. The pore diameters show a little change uponheating at 200℃ overnight. However, the materials do not have good hydrothermal stability.  相似文献   

2.
逄杰斌  丘坤元  危岩 《中国化学》2000,18(5):693-697
Mesoporous silica materials with pore diameters of 2-5 nm have been prepared using ascorbic acid as a nonsurfactant template or pore-forming agent in HCl-catalyzed sol-gel reactions of tetraethylorthosilicate,followed by removing the ascorbic acid compound by extraction with ethanol.Characterization results from nitrogen sorption isotherm,powder X-ray diffraction and transmission electron microscopy indicate that the materials have large specific surface areas (e.g.1000 m2/g) and pore volumes (e.g.0.8 cm3/g).The rnesoporosity is arisen from interconnecting disordered wormlike channels and pores with relatively broad size distributions.As the ascorbic acid concentration is increased,the pore diameters and pore volumes of the materials increase.  相似文献   

3.
Ti-incorporated mesoporous silica materials with pore diameters of 3-4 nm have been prepared via the co-hydrolysis and co-condensation reactions, that is the sol-gel reactions, of titanium (IV) tetrabutoxide and tetraethylorthosilicate in the presence of tartaric acid as template, followed by extraction with ethanol to remove the templatemolecules. The materials were characterized in detail by Fourier transform infrared spectroscopy, nitrogen adsorption-desorption test, powder X-ray diffraction, transmission electron microscopy and X-ray energy dispersive spectroscopy. Theresults indicate that the Ti-containing silica materials have large specific surface areas (ca. 1200 m~2 g~(-1)) and pore volumes(ca. 0.900 cm~3 g~(-1)). The mesoporosity arises from disordered interconnecting channels or pores. The Ti-incorporated silicasexhibit catalytic activity for the ring-opening polymerization of ε-caprolactone, otherwise, the pure mesoporous silicamaterial shows no catalytic activity under the identical conditions.  相似文献   

4.
The effects of carbon dioxide content on the catalytic performance and coke formation of nickel catalyst supported on mesoporous nanocrystalline zirconia with high surface area and pure tetragonal crystalline phase were investigated in methane reforming with carbon dioxide. The samples were characterized by XRD, BET, TPR, TPO, TPH, TEM, and SEM techniques. The catalyst prepared showed high surface area and a mesoporous structure with a narrow pore size distribution. The obtained results revealed that the increase in CO2 content increased the methane conversion and stability of the catalyst and significantly reduced the coke deposition. The TPH analysis showed that several species of carbon with different reactivities toward hydrogenation were deposited on the spent catalysts employed under different CO2 contents.  相似文献   

5.
Modified castor oil-based epoxy resin (EP)/polyurethane (PU) grafted copolymer by glycidyl polyhedral oligomeric silsesquioxane (glycidyl POSS) was synthesized. The damping properties, thermal stability, mechanical properties and morphology of the grafted copolymer modified by glycidyl POSS were studied systematically. The results revealed that the incorporation of glycidyl POSS improved the damping performance evidently and broadened damping temperature range, especially when the glycidyl POSS content was0.2%–1%. At the same time, there was a slight increase in thermal stability with the increase of POSS content. The tensile properties changed with the change of the copolymer's Tg, decreased at low POSS contents and increased at high POSS contents. This modified copolymer has the potential to be used as film damping material or constrained damping layer.  相似文献   

6.
The highly ordered macroporous Au and Pd with regular arrays of spherical pores have been synthesized by poly (styrene-co-acrylic) (PSA) colloidal crystal template. The pore size is tuneable in the range of 100-400 nm according to the size of PSA latex. The mechanism is based on the in-situ impregnating and reducing of metal ions in the interspaces of the PSA spheres then removing the template.  相似文献   

7.
A novel method to prepare mesoporous nano-zirconia was developed. The synthesis was carried out in the presence of PEO surfactants via a solid-state reaction. The materials exhibit a strong diffraction peak at low 28 angle and their nitrogen adsorption/desorption isotherms are typical of type IV with H1 hysteresis loops. The pore structure imaged by TEM can be described as wormhole domains. The tetragonal zirconia nanocrystals are uniform in size (around 1.5 nm) and their mesopores focus on around 4.6 nm. The zirconia nanocrystal growth is tentatively postulated to be the result of an aggregation mechanism. This study also reveals that the PEO surfactants can interact with the Zr-O-Zr framework to reinforce the thermal stability of zirconia. The ratio of NaOH to ZrOC12, crystallization and calcination temperature play an important role in the synthesis of mesoporous nano-zirconia.  相似文献   

8.
锡掺杂超微孔二氧化锆的合成及表征   总被引:1,自引:0,他引:1  
孔岩  马会宣  王军  任晓乾  颜其洁 《中国化学》2005,23(12):1584-1588
The super microporous tin-doped zirconium oxides were successfully synthesized by sol-gel method using zirconyl chloride as Zr source, tin chloride as Sn source and cetyltrimethylammonium bromide (CTMAB) as template under hydrothermal or refluxing conditions. The structures of the resultant materials were characterized by XRD, BET, FTIR, TG-DTA, XRF and HRTEM techniques. Experimental results indicated that the framework of the samples is typically ordered hexagonal structure. The surface area and pore volume of the materials prepared by refluxing method were larger than by hydrothermal method, but the ordering of pore distributions is lower. The thermal stability of the samples was relatively high (〉773 K) and decreased with the increment of tin content.  相似文献   

9.
Porous nickel films have been successfully electrodeposited using cathodic hydrogen bubbles as a template. The influence of deposition parameters including concentration, temperature and current density on the films morphologies has been systematically studied. SEM results showed that increase in current density resulted in the deposits with higher pore density and smaller pore size. Both the pore size and thickness of the pore walls increased with the electrolyte temperature range from 20 to 60 ℃ when the other deposition parameters were fixed. Increasing the concentration of NiCl2 or NH4Cl in the electrolyte led to the thicker of the pore walls and declined pore size and density. The deposits displayed a dendritic morphology in cross-sectional SEM image. Electrochemical characterization of the porous nickel films after surface oxidation in 1.0 mol·L-1 NaOH solution showed that specific capacitance as high as 7.2 F·g-1 could be reached.  相似文献   

10.
The kinetics of oxidation of ethylene glycol monoethylether (EGE) by diperiodatonickelate(IV) ion (DPN) was studied by spectrophotometry in alkaline medium. The reaction rate showed first order dependence on Ni(IV) and positive fractional order with respect to EGE. The pseudo-first order rate conslants, kobs increased with the increase of [OH^-] and decreased with the increase of [IO4^- ]. Added salts had little effect on the rate and no free radical was detected. Based on these,the mechanism including the equilibrium between DPN and EGE was proposed. Furthermore, the activation parameters of the reaction were calculated.  相似文献   

11.
Layer-by-layer nanotube template synthesis   总被引:2,自引:0,他引:2  
Electroless deposition of gold on the pore walls of polycarbonate templates is currently the best known method for controlling inside diameters of template-synthesized nanotubes. It would be very useful to have alternative template-based synthetic chemistries that yield nanotubes composed of other materials, but which still allow for precise control over the nanotube wall thickness and i.d. A film-formation process that is based on layer-by-layer deposition of the film-forming material along the pore walls of the template membrane provides this desired alternative synthetic chemistry. We describe here the use of Mallouk's alpha,omega-diorganophosphonate/Zr layer-by-layer film-forming method for preparing nanotubes within the pores of alumina template membranes. We have found that this method allows accurate, quantitative, and predictable control over the wall thickness, and thus i.d., of the layered nanotubes obtained.  相似文献   

12.
Lead zirconate (PbZrO3) nanotubes have been grown using porous anodic alumina templates. Sol–gel electrophoresis technique was utilized to form the nanotubes on the pore walls. The alumina templates were prepared using various anodizing voltages and times to achieve different pore diameters and lengths. Phosphoric acid solution was employed as the anodizing electrolyte. Stabilized lead zirconate sols were prepared using lead acetate trihydrate and an alkoxide precursor of zirconium. Acetic acid was used as the modifier. The prepared sols were driven into the template channels under various electrophoretic voltages and times, and the effect of the electrophoresis parameters on the formation of nanotubes was investigated. The filled templates were dried at 100 °C and sintered at 700 °C. Scanning and transmission electron microscopy (SEM and TEM) investigations demonstrated the tubular form of the lead zirconate arrays. The SEM investigations also showed the nanotubes have been efficiently grown in the template pores. The TEM studies further confirmed the polycrystalline nature of the tubes.  相似文献   

13.
N2静态吸附容量法的测定结果表明,磷钨酸铯盐(CsxH3-xPW12O40)的孔窝和孔分布与x值的大小相关。x〈1.5的CsxH3-xPW12O40孔容相近,孔分布近似;当x〉1.5时,CsxH3-xPW12O40的孔主要是孔径小于10nm的中孔和微孔,平均孔径及孔容随x的增加而增大。SEM和TEM的观测结果表明,CsxH3-xPW12O40的孔是微细粒子堆积留下的空隙孔,可能不存在晶内孔。  相似文献   

14.
Mesoporous solids which possess average pore diameters between 7 and 20 nm, depending on the composition, have been prepared. The solids have the general formula Al100PχM20 where M = Al or Fe, and χ = 0, 4.5, 9, 18, 36, 72 or 144. The initial addition of phosphorus as phosphate transforms the originally crystalline oxide/oxides into amorphous solids. These amorphous materials possess a narrow pore size distribution: 80–90% of the pores lie within 1–2 nm of the average pore diameter. Subsequent incremental amounts of phosphorus transform the material into a crystalline solid whilst the pore size distribution becomes much wider and the maximum moves towards larger pore diameters. Substitution of 20% of the aluminium by iron results, at a low phosphorus content, in pores with smaller pore volumes and smaller surface areas.

The data in the dVp/dDp = > Dp) graphs, where Vp is the incremental pore volume and Dp is the average pore diameter, can be approximated using an admixture of Gaussian and Lorentzian curves. For low phosphorus contents the dVp/dDp = (Dp) curves have a mainly Gaussian profile but the gradual addition of phosphorus transforms them to Lorentzian-type curves. An attempt to approximate the histograms dVp =(Dp) with the minimum number of distribution curves made up of the corresponding Gaussian and Lorentzian components indicates that each successive addition of phosphorus creates a dominant new pore component at a larger pore diameter. At the same time, the components at smaller pore diameters are diminished and eventually disappear as more phosphorus is added.  相似文献   


15.
Porous inorganic-organic hybrids have been prepared by the reaction of 4,4′-biphenylbis(phosphonic acid) with Zr(IV) in organic solvents. The resultant products consist of α-zirconium phosphate-type layers crosslinked by biphenyl pillars. By using an excess of Zr in the synthesis, surface areas of ∼400 m2/g have been obtained and the pores can be controlled to be the micro-type with diameters of 10-20 Å and a relatively narrow pore size distribution. The aromatic rings are readily sulfonated by SO3 under pressure to produce very strong Bronsted acid catalysts. An NMR procedure, utilizing the shift of the carbonyl carbon of acetone-2-13C sorbed onto the sulfonated products, indicated an acid strength for the Bronsted acid sites equal to that of 100% sulfuric acid. Unpillared Zr(O3PC6H4SO3H)2 has a somewhat lower acid strength, but still has a higher acid strength than zeolites HX and HY. The particles of this layered acid exfoliate in water and light-scattering data show that they are in 5 nm size range. They also exhibit high proton conductivity as solid membranes. These sulfonated materials have a potential as strong acid catalysts for a variety of reactions at a low temperature.  相似文献   

16.
We present an in situ reduction method to synthesize a novel structured MnO(2)/mesoporous carbon (MnC) composite. MnO(2) nanoparticles have been synthesized and embedded into the mesoporous carbon wall of CMK-3 materials by the redox reaction between permanganate ions and carbons. Thermogravimetric analysis (TG), X-ray photoelectron spectrum (XPS), X-ray diffraction (XRD), nitrogen sorption, transmission electron microscopy (TEM), and cyclic voltammetry were employed to characterize these composite materials. The results show that different MnO(2) contents could be introduced into the pores of CMK-3 treated with different concentrations of potassium permanganate aqueous solution, while retaining the ordered mesostructure and larger surface area. Increasing the MnO(2) content did not result in a decrease in pore size from the data of nitrogen sorption isotherms, indicating that MnO(2) nanoparticles are embedded in the pore wall, as evidenced by TEM observation. We obtained a large specific capacitance over 200 F/g for the MnC composite and 600 F/g for the MnO(2), and these materials have high electrochemical stability and high reversibility.  相似文献   

17.
Melting and freezing of water in cylindrical silica nanopores   总被引:1,自引:0,他引:1  
Freezing and melting of H(2)O and D(2)O in the cylindrical pores of well-characterized MCM-41 silica materials (pore diameters from 2.5 to 4.4 nm) was studied by differential scanning calorimetry (DSC) and (1)H NMR cryoporometry. Well-resolved DSC melting and freezing peaks were obtained for pore diameters down to 3.0 nm, but not in 2.5 nm pores. The pore size dependence of the melting point depression DeltaT(m) can be represented by the Gibbs-Thomson equation when the existence of a layer of nonfreezing water at the pore walls is taken into account. The DSC measurements also show that the hysteresis connected with the phase transition, and the melting enthalpy of water in the pores, both vanish near a pore diameter D* approximately equal to 2.8 nm. It is concluded that D* represents a lower limit for first-order melting/freezing in the pores. The NMR spin echo measurements show that a transition from low to high mobility of water molecules takes place in all MCM-41 materials, including the one with 2.5 nm pores, but the transition revealed by NMR occurs at a higher temperature than indicated by the DSC melting peaks. The disagreement between the NMR and DSC transition temperatures becomes more pronounced as the pore size decreases. This is attributed to the fact that with decreasing pore size an increasing fraction of the water molecules is situated in the first and second molecular layers next to the pore wall, and these molecules have slower dynamics than the molecules in the core of the pore.  相似文献   

18.
The extraction behavior and phase behavior of TOPO (or TRPO)-kerosene/HCl-ZrOCl(2) systems have been investigated. The middle phase with bicontinuous structure is first used as both the Zr(IV) source and the template to prepare mesoporous material just by precipitation with aqua ammonia under low temperature. By this method, crystal mesoporous ZrO(2) powders with average d-values of 6.3 and 7.48 nm, respectively, have been obtained. TG-DTA, TEM, and XRD are adopted for the characterization of the synthesized sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号