首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrophilic substitutions Co(II) M(II) (M = Mn, Ni, Cu, Zn, Cd) in cobalt(II) hexacyanoferrate(II) gelatin-immobilized matrices in contact with aqueous solutions of corresponding chlorides MCl2 were studied. As a result of this contact, Co(II) was shown to be replaced to some extent by Ni(II), Cu(II), Zn(II), or Cd(II) and to give heteronuclear cobalt(II) hexacyanoferrates(II) and two-charge ions. A complete substitution of Co(II) or the formation the respective mononuclear hexacyanoferrate(II) M2[Fe(CN)2] was observed in neither of the studied systems Co(II) M(II). No Co(II) Mn(II) substitution was observed, even though the immobilized matrix was in contact with a solution for a long time.  相似文献   

2.
Reactions of electrophilic substitution Mn(II) M(II) (M = Co, Ni, Cu, Zn, Cd) are studied in gelatin-immobilized Mn(II) hexacyanoferrate(II) systems brought in contact with aqueous solutions of metal chlorides MCl2. As the result of this contact, Mn(II) is replaced by Co(II), Ni(II), Cu(II), Zn(II), or Cd(II) to give heteronuclear metal hexacyanoferrates(II) (MHCF) of Mn(II) and two-charged ions. Neither of the systems under study showed a complete substitution of Mn(II) or the formation of the respective mononuclear hexacyanoferrate(II) M2[Fe(CN)6]. When any of the above gelatin-immobilized MHCF was brought in contact with an aqueous solution of MnCl2, no electrophilic substitution M(II) Mn(II) was observed even for a long contact time.  相似文献   

3.
With the use of Kl?ui's tripodal ligand, [(Cp)Co(P(O)(OEt)(2))(3)](-) (L(CoEt), Cp = cyclopentadiene) as the auxiliary ligand to react with different metal salts and tricyanometalate building blocks, five neutral trimetallic hexanuclear complexes: [(Tp)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·6H(2)O (1, Tp = hydridotris(pyrazolyl)borate), [(Tp*)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·2H(2)O (2, Tp* = hydridotris(3,5-dimethyl-pyrazolyl)borate), [(pzTp)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·H(2)O·3MeOH (3, pzTp = tetra(pyrazolyl)borate), [(Tp)(2)Fe(2)(CN)(6)Ni(2)(L(CoEt))(2)(MeCN)(2)]·2MeCN·2H(2)O (4) and [(Tp)(2)Fe(2)(CN)(6)Mn(2)(L(CoEt))(2)(MeCN)(2)]·2MeCN (5), have been obtained and structurally characterized. Magnetic measurements confirm that there are ferromagnetic couplings between the cyano-bridged Fe and Cu/or Ni ions and antiferromagnetic interaction between the cyano-bridged Fe and Mn ions. Slow relaxation of the magnetization is observed in complexes 1 and 4, while complex 3 exhibits metamagnetic behavior with a critical field of 17.5 kOe.  相似文献   

4.
The thermodynamic and geometric parameters of isomeric macrotricyclic Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes that can form upon the complexation of the corresponding hexacyanoferrates( II) with thiooxamide H2N–C(=S)–C(=O)–NH2 and glyoxal HC(=O)–CH(=O) in gelatin-immobilized matrices have been calculated by the OPBE/TZVP DFT method with the use of the Gaussian09 program package. It has been found that a complex with the MN4 chelate core is most stable for M = Mn, Fe, Co, Ni, and Zn, and the MN2S2 core is most stable for M = Cu. Bond lengths and bond angles have been reported, and it has been noted that in all complexes, except the Zn(II) one, the chelate core and three fivemembered chelate rings are almost planar.  相似文献   

5.
A comparison of the electrochemical properties of a series of dinuclear complexes [M(2)(L)(RCO(2))(2)](+) with M = Mn or Co, L = 2,6-bis(N,N-bis-(2-pyridylmethyl)-sulfonamido)-4-methylphenolato (bpsmp(-)) or 2,6-bis(N,N-bis(2-pyridylmethyl)aminomethyl)-4-tert-butylphenolato (bpbp(-)) and R = H, CH(3), CF(3) or 3,4-dimethoxybenzoate demonstrates: (i) The electron-withdrawing sulfonyl groups in the backbone of bpsmp(-) stabilize the [M(2)(bpsmp)(RCO(2))(2)](+) complexes in their M(II)(2) oxidation state compared to their [M(2)(bpbp)(RCO(2))(2)](+) analogues. Manganese complexes are stabilised by approximately 550 mV and cobalt complexes by 650 mV. (ii) The auxiliary bridging carboxylato ligands further attenuate the metal-based redox chemistry. Substitution of two acetato for two trifluoroacetato ligands shifts redox couples by 300-400 mV. Within the working potential window, reversible or quasi-reversible M(II)M(III)? M(II)(2) processes range from 0.31 to 1.41 V for the [Co(2)(L)(RCO(2))(2)](+/2+) complexes and from 0.54 to 1.41 V for the [Mn(2)(L)(RCO(2))(2)](+/2+) complexes versus Ag/AgCl for E(M(II)M(III)/M(II)(2)). The extreme limits are defined by the complexes [M(2)(bpbp)(CH(3)CO(2))(2)](+) and [M(2)(bpsmp)(CF(3)CO(2))(2)](+) for both metal ions. Thus, tuning the ligand field in these dinuclear complexes makes possible a range of around 0.9 V and 1.49 V for the one-electron E(M(II)M(III)/M(II)(2)) couple of the Mn and Co complexes, respectively. The second one-electron process, M(II)M(III)? M(III)(2) was also observed in some cases. The lowest potential recorded for the E°(M(III)(2)/M(II)M(III)) couple was 0.63 V for [Co(2)(bpbp)(CH(3)CO(2))(2)](2+) and the highest measurable potential was 2.23 V versus Ag/AgCl for [Co(2)(bpsmp)(CF(3)CO(2))(2)](2+).  相似文献   

6.
The reaction of the hexacyanometalates K3[M(1)(CN)6] (M(1) = Cr(III), Fe(III), Co(III)) with the bispidine complexes [M(2)(L(1))(X)](n+) and [M(2)(L(2))(X)](n+) (M(2) = Mn(II), Ni(II), Cu(II); L(1) = 3-methyl-9-oxo-2,4-di-(2-pyridyl)-7-(2-pyridylmethyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylic acid dimethyl ester; L(2) = 3-methyl-9-oxo-7-(2-pyridylmethyl)-2,4-di-(2-quinolyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylic acid dimethyl ester; X = anion or solvent) in water-methanol mixtures affords trinuclear complexes with cis- or trans-arrangement of the bispidine-capped divalent metal centers around the hexacyanometalate. X-ray structural analyses of five members of this family of complexes (cis-Fe[CuL(2)]2, trans-Fe[CuL(1)]2, cis-Co[CuL(2)]2, trans-Cr[MnL(1)]2, trans-Fe[MnL(1)]2) and the magnetic data of the entire series are reported. The magnetic data of the cyanide bridged, ferromagnetically coupled cis- and trans-Fe[ML]2 compounds (M = Ni(II), Cu(II)) with S = 3/2 (Cu(II)) and S = 5/2 (Ni(II)) ground states are analyzed with an extended Heisenberg Hamiltonian which accounts for anisotropy and zero-field splitting, and the data of the Cu(II) systems, for which structures are available, are thoroughly analyzed in terms of an orbital-dependent Heisenberg Hamiltonian, in which both spin-orbit coupling and low-symmetry ligand fields are taken into account. It is shown that the absence of single-molecule magnetic behavior in all spin clusters reported here is due to a large angular distortion of the [Fe(CN)6](3-) center and the concomitant quenching of orbital angular momentum of the Fe(III) ((2)T2g) ground state.  相似文献   

7.
The structure, energies, and magnetic properties of electromeric forms of binuclear Fe–M complexes (M = Co, Ni, Cu, Zn) with a 1,10-phenanthroline-based linker have been studied by the DFT UB3LYP*/6-311++G(d,p) method. Studying the spin-state switching mechanisms has demonstrated that all the compounds under consideration are capable of undergoing spin crossover at the iron ion. In solutions of complexes with cobalt and nickel bis-chelates, a competing process accompanied by the change in magnetic characteristics—configurational isomerism—is possible.  相似文献   

8.
基于DFT-BS方法,在不同泛函方法和基组下计算[Cu~ⅡGd~Ⅲ{PyCO(OEt) Py C(OH)(OEt)Py}_3]~(2+)及3d-Gd异金属双核配合物的磁耦合常数,结果表明,PBE0/TZVP(Gd为SARC-ZDRA-TZVP)水平可用于描述其磁学性质。顺磁中心Cu~Ⅱ、Gd~Ⅲ与桥联配位氧原子间存在较强的轨道相互作用,其磁轨道主要由Gd~Ⅲ的4fI_(z~3)、4f_(z(x~2-y~2))轨道、Cu~Ⅰ的3d_(x~2-y~2)轨道和桥联配位原子O的p轨道组成。顺磁中心Cu~Ⅱ离子以自旋离域作用为主,Gd~Ⅲ离子以自旋极化作用为主,顺磁中心Cu~Ⅱ自旋离域作用对桥联氧原子的影响大于顺磁中心Gd~Ⅲ的自旋极化作用。在同结构3d-Gd配合物中,随着M~Ⅱ离子未成对电子的增加,顺磁中心间ρ~2_(HS)-ρ~2_(BS)越大,顺磁中心M~Ⅱ和Gd~Ⅲ之间的反铁磁性贡献越大,其磁耦合常数越小。  相似文献   

9.
The complexes of demethylcantharic acid coordinating with Zn~(2+), Cu~(2+), Ni~(2+) and Co~(2+) wereprepared and the five crystal structures were all determined by X-ray diffraction. Metal ions in thefive structures are of six-membered coordination. The demethylcantharate ions can act as a tri-,tetra- or penta-dentate ligand toward metal ions to form ion-pair structure, chain structure or threedimensional polymer structure respectively. The bridge oxygen atom in ligand always participatesin coordination. In the structures of KM(C_8H_8O_5)_2·6H_2O, the formal valence of M (Ni, Co) is+3, but the data of crystal structures show that M are M~(2+) ions and Ni may form a Ni~(2+) -stabilizedligand radical. In addition, the metal ions are assumed to be probes and some possible Interactionsbetween the acceptor and the receptor are discussed.  相似文献   

10.
Complexes [ML2] of cobalt(II), nickel(II), copper(II), zinc(II), and cadmium(II) with asymmetrically substituted (E)-3-ethyl-5-[(4-iodo-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl]-2,4-dimethyl-1H-pyrrole (HL) have been prepared and characterized for the first time. The spectral properties, stability in solutions and in the solid phase at elevated temperature of the complexes have been studied. The effects of complexing metal ion and the reaction medium on the spectral luminescent properties (absorptivity, quantum yield, fluorescence lifetime, and the radiation constant) and on thermal destruction of the [ML2] complexes have been discussed.  相似文献   

11.
The tritopic ligand 2poap self-assembles in the presence of Zn(NO(3))(2) and Fe(NO(3))(3) to form homoleptic [3 x 3] nonanuclear M(9) (M = Zn(II), Fe(III)) square grid structures and with Pb(ClO(4))(2) to form a dimerized linear trinuclear [Pb(3)](2) structure. Cl2poap and Cl2poapz form self-assembled homoleptic [3 x 3] Mn(II)(9) square grids with Mn(ClO(4))(2) and Mn(NO(3))(2), respectively, but an unusual incompletely metalated Fe(III)(5) square grid is formed on reaction of Cl2poap with Fe(ClO(4))(3). X-ray structures are reported for [Mn(9)(Cl2poap-2H)(6)](ClO(4))(6).10H(2)O (3), [Mn(9)(Cl2poapz-2H)(6)] (NO(3))(6).22H(2)O (4), [Zn(9)(2poap-2H)(3)(2poap-H)(3)](NO(3))(9).24H(2)O (5), [Pb(3)(2poap-2H) (ClO(4))(4)](2).8H(2)O (6), and [Fe(5)(Cl2poap-H)(6)](ClO(4))(9).34.5H(2)O (7). Compound 3 crystallized in the monoclinic system, space group P(-)1, with a = 18.179(1) A, b = 18.857(1) A, c = 25.871(2) A, alpha = 70.506(2) degrees, beta = 86.440(1) degrees, gamma = 75.175(2) degrees, and z = 2. Compound 4 crystallized in the monoclinic system, space group P(-)1, with a = 16.900(2) A, b = 20.02393) A, c = 25.663() A, alpha = 84.743(3) degrees, beta = 84.885(2) degrees, gamma = 67.081(2) degrees, and z = 2. Compound 5 crystallized in the monoclinic system, space group P(-)1, with a = 18.482(1) A, b = 18.774(1) A, c = 28.112(2) A, alpha = 104.020(1) degrees, beta = 97.791(1) degrees, gamma = 117.036(1) degrees, and z = 2. Compound 6 crystallized in the monoclinic system, space group P(-)1, with a = 10.0513(6) A, b = 11.0958(6) A, c = 17.334(1) A, alpha = 100.932(1) degrees, beta = 100.387(1) degrees, gamma = 94.565(1) degrees, and z = 2. Compound 7 crystallized in the monoclinic system, space group P(-)1, with a = 19.164(1) A, b = 19.587(2) A, c = 26.673(2) A, alpha = 76.430(2) degrees, beta = 78.834(2) degrees, gamma = 64.973(1) degrees, and z = 2. Compound 3 exhibits intramolecular antiferromagnetic exchange within the nonanuclear [Mn(9)(mu-O)(12)] grid structure (J = -4.6 cm(-1)), while the analogous nonanuclear complex [Fe(9)(2poap-2H)(6)](NO(3))(15).18H(2)O (8) is dominated by intramolecular antiferromagnetic coupling at high temperatures but exhibits a low-temperature feature indicative of additional ferromagnetic interactions. The isolated pentanuclear Fe(5) [4 + 1] square grid in 7, with distant Fe-Fe bridging, exhibits very weak antiferromagnetic coupling (J = -0.2 cm(-1)). M?ssbauer spectroscopy data are consistent with high-spin Fe(III)(9) and Fe(III)(5) structures.  相似文献   

12.
Abstract

Complexes of [MM′(NCSe)4] (M=Co, Ni, Zn, Cd; M′=Zn, Cd, Hg;) with certain ligands (L), viz., ethylenediamine(en), isonicotinic acid hydrazide(inh), 3-aminopyridine(apy), pyridine(py), pyrazine 2-carboxamide(pza), pyrazine 2–3-dicarboxamide(pzd) and tetrahydrofuran(thf) have been synthesized and characterized. Their molar conductance, magnetic moments, infrared and electronic spectral studies indicate that these complexes are of three types: (i) cationic-anionic, viz., [ML6] [M′(NCSe)4] (M=Ni, M′=Cd, L=inh; M=Cd, M′=Hg, L=py; and M=Zn, M′=Cd, Hg; L=en;) (ii) monomeric bridged, viz., L4 M(NCSe)2 M′(SeCN)2 (M=Co, Ni; M′=Cd, Hg; L=pzd;) (iii) polymeric bridged, viz., [dbnd](SeCN)2 L2 M(NCSe)2 Hg (M=Co, Ni; M′=Zn, Cd, Hg; L=thf, pza and apy). The nature of bonding in these complexes has been related to the softness difference of M and M′ and the basicity of the ligands.  相似文献   

13.
Individual crystalline phases of composition MIIU3O10 · nH2O were prepared by reacting schoepite UO3 · 2.25H2O with aqueous solutions of Mg, Mn, Co, Ni, Cu, Zn, or Cd nitrates under hydrothermal conditions at 200°C. The composition and structure of the resultant compounds were determined by hightemperature X-ray diffraction, IR spectroscopy, scanning calorimetry, and chemical analysis; the dehydration and thermal destruction of the compounds were studied.  相似文献   

14.
15.
A combined structural, magnetic and thermoelectric study of polycrystalline ternary MIn2S4 (M = Mn, Fe, Co, Ni) thiospinels is presented. All compounds crystallize with MgAl2O4-type structure. Rietveld refinement analysis confirmed that the preferred crystallographic position of transition metal element changes from mainly tetrahedral 8a for Mn to exclusively octahedral 16d for Ni (i.e. increase of the inversion parameter). Magnetic susceptibility measurements revealed M-elements to possess 2+ oxidation state in MIn2S4. All these compounds order antiferromagnetically with Néel temperatures TN ranging from 5–13 K. The studied thiospinels are n-type semiconductors with large values of electrical resistivity ρ > 0.6 Ω · m at room temperature. An increase of the inversion parameter leads to a reduction of the determined activation energies, as well as to a more disorder-like behavior of thermal conductivity. The highest thermoelectric Figure of merit ZT was observed for MIn2S4 with M = Fe, Ni, which adopt inverse spinel structure.  相似文献   

16.
The design of ligands capable of forming stable and strong luminescent Eu3+ complexes is a theme of great interest . Because such complexes have potential use as luminescent molecular label for biological study1 and luminescent materials for lasers2. The cryptates have good thermodynamic stability and kinetic inertness toward metal dissociation. The pioneer studies on lanthanide polyaza-cryptates containing three 2, 2'-bipyridines and their N-oxides have been presented by J. M. Lehn, and c…  相似文献   

17.
TwomodificationsofBPO4-theletragonalhigh-cristobalite'andthehexagonalhighpressurephase=,havebeenf0und.Thehigh-cristobalitephasehasIongbeenusedasmulti-functionaIcataIyst'.Wereportherethesynthesis,structureretinementsofnewborophosphateswithIow-cristobaIitestructurestabiIizedbytransitionmetalsMn,Fe,Co,NiandCu.andtheirmagneticproperties.AllthestartingreagentsfH3BO3,NH4H2PO4,MnO2,Fe2O3,Co(CH3COO)2.4H2O,Ni(CH3C00)2.4H20,Cu0wereinARpuritiesandweIlground,pre-reactedat7OOaCfor4handfin…  相似文献   

18.
Two heterometallic coordination complexes, {[Cu(aeop)Zn(H2O)3]2?·?3H2O} n (1) and [Cu(aeop)Ni(H2O)4]?·?4H2O (2) (H4aeop?=?N-(2-aminoterephthalic acid)-N′-(1,3-propanediamine)oxamidate), have been synthesized and characterized by elemental analyses, IR, UV spectroscopy, thermogravimetric analysis, and X-ray crystal diffraction. Complex 1 features a 1-D chain constructed from neutral tetranuclear units. Complex 2 is a neutral binuclear complex. Through intermolecular hydrogen-bonding interactions, 2 gives a 3-D network structure. The variable temperature magnetic susceptibility measurements (2–300?K) of 2 show a pronounced antiferromagnetic interaction between the copper(II) and nickel(II), and the exchange integral J is equal to ?42.7?cm?1.  相似文献   

19.
用DSC、TGA技术分别在N2气氛和O2气氛下对MC2O4(M=Mn、Fe、Co、Ni、Cu、Zn)的脱水和分解过程作了热力学和动力学的研究.在N2气氛下,MC2O4·2H2O(M=Mn、Fe、Co、Ni、Zn)脱水温度Tde和脱水焓!deHm随原子序数Zre递增呈现明显的“二分组效应”;!deHm在(96.46±7.00)kJ·mol-1范围内波动;MC2O4·2H2O(M=Mn、Fe、Ni)的分解温度Td随原子序数递增呈现良好的线性关系;且各草酸盐分解得到氧化物(CuC2O4生成Cu、CuO混合物)时,MC2O4(M=Co、Ni、Cu)分解焓随原子序数增大也存在良好的线性关系.各草酸盐除NiC2O4·2H2O脱水过程和FeC2O4分解过程外,其余各过程机理函数均为随机成核和随后成长型.  相似文献   

20.
MC2O4(M=Mn、Fe、Co、Ni、Cu、Zn)的热力学及其热分析动力学   总被引:1,自引:0,他引:1  
用DSC、TGA技术分别在N2气氛和O2气氛下对MC2O4(M=Mn、Fe、Co、Ni、Cu、Zn)的脱水和分解过程作了热力学和动力学的研究. 在N2气氛下, MC2O4•2H2O(M=Mn、Fe、Co、Ni、Zn)脱水温度Tde和脱水焓ΔdeHm随原子序数Zre递增呈现明显的“二分组效应”;ΔdeHm在(96.46±7.00) kJ•mol-1范围内波动;MC2O4•2H2O (M=Mn、Fe、Ni)的分解温度Td随原子序数递增呈现良好的线性关系;且各草酸盐分解得到氧化物(CuC2O4生成Cu、CuO混合物)时, MC2O4(M=Co、Ni、Cu) 分解焓随原子序数增大也存在良好的线性关系. 各草酸盐除NiC2O4•2H2O脱水过程和FeC2O4分解过程外, 其余各过程机理函数均为随机成核和随后成长型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号