首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Re-examination of all known xenon isotopic data for achondrites reveals that244Pu fission xenon can be resolved in about three-fourths of the meteorites of this class. The amounts of244Pu fission xenon found in these meteorites range from ca. 1–2 up to 20–40·10–12 ccSTP/g. These meteorites started to retain their xenon some 200–500 million years later than did the carbonaceous chondrites Allende, Groznaya, Mokoia, Murchison, Murray, and Renazzo, which began to retain their xenon over 4800 million years ago.  相似文献   

2.
Re-examination of all known xenon isotopic data for the carbonaceous chondrites Renazzo, Mokoia, and Groznaya reveals that these meteorites contain (26±7), (33±1), and (36±4)·10–12 (ccSTP136fXe/g) of244Pu fission xenon, respectively. These meteorites started to retain their xenon more than 4,800 million years ago at about the same time as did the carbonaceous chondrites Allende, Murray, and Murchison.  相似文献   

3.
Re-calculation of the244Pu ages of lunar rocks 10057 and 12013 indicates that, while the former started to retain its xenon (4,189 ?74 +45 ) million years ago, the latter was formed at a much later time, after the extinct nuclide244Pu had essentially decayed away.  相似文献   

4.
Until recently, scientists believed that the chemical elements were synthesized only in stars. The discovery of the Oklo Phenomenon in 1972 has revealed, however, that a nuclear fire had existed in terrestrial uranium ore deposits about two billion years ago. The discovery of244Pu fission xenon in extraterrestrial samples, such as the Moon and the meteorites, on the other hand, has demonstrated that the transuranium elements were synthesized in exploding stars (supernovae).  相似文献   

5.
A total of 13 samples of diamond separates studied so far, all contain excess 244Pu fission xenon. On the other hand, none of the SiC separates contains excess 244Pu fission xenon, while 5 out of 10 samples of graphite separates studied so far contain excess 244Pu fission xenon.  相似文献   

6.
Re-examination of all known xenon isotope data for the carbonaceous chondrite Allende reveals that this meteorite contains as much as (22±1)·10–1 2 csSTP per gram of fissogenic136Xe (136fXe) from the extinct nuclide244Pu and it appears to have started to retain its xenon more than 4800 million years ago, when the244Pu to238U ratio in the solar system was 0.113±0.006 (atom/atom).  相似文献   

7.
The carbonaceous chondrite Allende contains (22±1)·10−12 cm3STP/g of244Pu fission xenon and two kinds of primordial xenon: Type I and Type II. The former represents the isotopic composition of a primordial xenon, which resided in the vicinity of a supernova shortly before it exploded, while the latter represents that of the xenon, which resided in the supernova. The isotopic composition of xenon found in the pink inclusion of the Allende meteorite, corrected for the presence of very large excesses of244Pu fission xenon,129Xe from the decay of129I, and of128Xe from the neutron-capture reactions on127I, resembles that of Type-I primordial xenon. The isotopic composition of xenon found in the diamond inclusions of the Allende meteorite, on the other hand, represents that of Type-II primordial xenon and it resembles that of a mixture of Type-I primordial xenon whose isotopic composition is severely altered by a combined effect of (a) mass-fractionation, (b) spallation, (c) stellar-temperature neutron-capture reactions, and (d) the presence of a large excess of244Pu fission xenon.  相似文献   

8.
Xenon found in lunar samples is a binary mixture of244Pu fission xenon and a trapped xenon, whose isotopic composition often shows a striking resemblance to that ofTakaoka's1 primitive xenon. The decay product of129I is conspicuously absent in lunar samples and this may be attributed to the facts that (a) the half-life of129I is much shorter than that of244Pu, and (b) the separation of xenon from plutonium may take place easily, since the former is a gaseous element, while the latter is a refractory element. The separation of xenon from iodine may not take place easily, however, since the former is a gaseous element, while the latter is a volatile element. The isotopic compositions of the trapped xenon released from ordinary chondrites and achondrites resemble that ofTakaoka's primitive xenon, which has been mass-fractionated in such a manner that the heavier isotopes are systematically enriched relative to the lighter isotopes.  相似文献   

9.
A number of strange xenon components have been reported in the literature during the past three decades; for example, AVCC (average carbonaceous chondrite), CCF (carbonaceous chondrite fission) xenon, xenon-X, xenon-H, xenon-L, xenon-S, xenon-U, SUCOR (surface correlated xenon), BEOC (Bern Oberflächen-Correliert) xenon, and so on. It is often assumed that they reprsent the isotopic compositions of more or less pure or primordial components of xenon. If one attempts to interpret the existing xenon isotope data for meteorites and lunar samples, assuming that they are pure or primordial, however, one encounters all sorts of problems and no coherent theory concerning the variation of the isotopic composition of xenon in the solar system emerges. We have therefore re-examined over 4,000 sets of existing xenon isotope data for meteorites and lunar samples. The results indicate that these strange xenon components are mixtures of244Pu fission xenon and atmospheric xenon, whose isotopic compositions have been altered by the processes of a) mass-fractionation, b) spallation and c) neutron-capture reactions.  相似文献   

10.
A cation-exchange cycle has been developed for the recovery and concentration of the Am/Cm product from a DTPA/lactic acid solution used in an extraction process for the isolation and separation of the actinides from lanthanide fission products. The optimum pH region for the sorption of Am3+ from 0.05M DTPA/1M lactic acid solutions by strongly acidic cation-exchange resins is pH 0.9–1.0. Maximum usable capacities, heights of the exchange zone, and concentration factors for different resins, cross-linkages and temperatures have been determined. Decontamination factors are given for some fission products, as well as U, Np and Pu.  相似文献   

11.
Re-examination of a vast amount of xenon isotope data which have been accumulated since the 1960s reveals that the so-called CCF (carbonaceous chondrite fission) xenon is a mixture of244Pu fission xenon and a severely mass-fractionated primordial xenon, whose isotopic composition has been further altered by neutron-capture and spallation reactions, which occurred in the vicinity of a supernova that most likely exploded sometime more than 4.8 billion years ago. The integrated flux of 10 KeV (stellar temperature) neutrons to which the xenon was exposed appears to have been in excess of 1023 n/cm2.  相似文献   

12.
Re-examination of a vast amount of lead and xenon isotope data that have been accumulated since the Apollo 11 landing on the moon in July 1969 reveals that some of the lunar fines and breccia started to retain their radiogenic lead and fissiogenic xenon isotopes about 5 billion years ago when the ratios of235U and244Pu to238U in the early solar system were approximately 4 and 2 atoms per 10 atoms of238U, respectively.  相似文献   

13.
Age of individual uranium–plutonium (U/Pu) mixed particles with various U/Pu atomic ratios (1–70) were determined by inductively coupled plasma mass spectrometry. Micron-sized particles were prepared from U and Pu certified reference materials. The Pu reference was stored for 4–6 years since the last purification (July 14, 2008). The Pu purification age was obtained from the 241Am/241Pu ratio which was calculated from the product of three measured ratios of Pu and Am isotopes in the eluted fractions. These ratios were measured by a high-resolution inductively coupled plasma mass spectrometer equipped with a desolvation system. Femto-gram to pico-gram quantities of Am, U, and Pu in a sample solution were sequentially separated on a small anion-exchange column. The 241Am/241Pu ratio was accurately determined by spiking pure 243Am into the sample solution. The average determined age for the particles for the five independent U/Pu ratios was in good agreement with the expected age with high accuracy (difference age 0.27 years) and high precision (standard deviation 0.44 years). The described analytical technique can serve as an effective tool for nuclear safeguards and environmental radiochemistry.
Figure Young (4?6 y) Pu purification age of individual U/Pu mixed micron-sized reference particles for the five independent U/Pu ratios (1?70) were determined with 0.27±0.44 y difference from the expected age. Sub pico-gram quantities of Am, U and Pu were sequentially separated a small column, and their isotope ratios were accurately measured using an ICP-MS by applying the 243Am spiking technique to the analysis and correcting the impurity and the contaminations.
  相似文献   

14.
Isotopic compositions of the strange Xenon components-HL and the s-type xenon can be explained in a straightforward manner as due to the alteration of the isotopic composition of xenon caused by a combined effect of (a) mass-fractionation, (b) spallation and (c) stellar-temperature neutron-capture reactions. As much as 42.49% of total 136Xe ( 136Xe) found in the Allende diamond inclusions is 244Pu fission xenon (136fXe) and the trapped xenon is severely mass-fractionated in such a manner that the lighter xenon isotopes are systematically depleted relative to the heavier isotopes. The relative abundances of 130Xe and 132Xe in the trapped xenon component are both markedly enhanced indicating that it was irradiated with a total flux of 1.2·1023 n·cm-2 of stellar-temperature (10 keV) neutrons. The xenon found in the s-type xenon, on the other hand, resemble that of the atmospheric xenon irradiated with a total flux of about 6.0·1023 n·cm-2 of 10 keV neutrons. These results indicate that we are seeing here the effects of nuclear processes occurring inside of a star, such as the exploding supernova.  相似文献   

15.
Analysis of post-nuclear detonation materials provides information on the type of device and its origin. Compositional analysis of trinitite glass, fused silicate material produced from the above ground plasma during the detonation of the Trinity nuclear bomb, reveals gross scale chemical and isotopic heterogeneities indicative of limited convective re-homogenization during accumulation into a melt pool at ground zero. Regions rich in weapons grade Pu have also been identified on the surface of the trinitite sample. The absolute and relative abundances of the lanthanoids in the glass are comparable to that of average upper crust composition, whereas the isotopic abundances of key lanthanoids are distinctly non-normal. The trinitite glass has a non-normal Nd isotope composition, with deviations of ?1.75 ± 0.60 ε (differences in parts in 104) in 142Nd/144Nd, +2.24 ± 0.75 ε in 145Nd/144Nd, and +1.01 ± 0.38 ε in 148Nd/144Nd (all errors cited at 2σ) relative to reference materials: BHVO-2 and Nd-Ames metal. Greater isotopic deviations are found in Gd, with enrichments of +4 ± 1 ε in 155Gd/160Gd, +4.19 ± 0.75 ε in 156Gd/160Gd, and +3.48 ± 0.52 ε in 158Gd/160Gd compared to BHVO-2. The isotopic deviations are consistent with a 239Pu based fission device with additional 235U fission contribution and a thermal neutron fluence between 1.4 and 0.97 × 1015 neutrons/cm2.  相似文献   

16.
Re-examination of a vast amount of existing xenon isotope data, which have been accumulated in the literature since the 1960's, reveals that the variation of the isotopic composition of xenon in the solar system can be attributed to a combined effect of (a) mass-fractionation, (b) spallation and (c) stellar-temperature neutron-capture reactions plus the addition of (d) the beta-decay product of 129I and of (e) the spontaneous fission products of 244Pu. The effect of each of the above-mentioned processes can be extremely large, due, primarily to the fact that these processes occurred in the interior of a supernova, which exploded about 5.1 billion years ago.  相似文献   

17.
A stability-indicating ultra-high-performance liquid chromatography (UHPLC) method with a diode array detector was developed and validated for the determination of cis/trans isomers of perindopril l-arginine in bulk substance and pharmaceutical dosage form. The separation was achieved on a Poroshell 120 Hilic (4.6 × 150 mm, 2.7 µm) column using a mobile phase composed of acetonitrile–0.1 % formic acid (20:80 v/v) at a flow rate of 1 mL min?1. The injection volume was 5.0 µL and the wavelength of detection was controlled at 230 nm. The selectivity of the UHPLC-DAD method was confirmed by determining perindopril l-arginine in the presence of degradation products formed during acid–base hydrolysis and oxidation as well as degradation in the solid state, at an increased relative air humidity and in dry air. The method’s linearity was investigated in the ranges 0.40–1.40 µg mL?1 for isomer I and 0.40–2.40 µg mL?1 for isomer II of perindopril l-arginine. The UHPLC-DAD method met the precision and accuracy criteria for the determination of the isomers of perindopril l-arginine. The limits of detection and quantitation were 0.1503 and 0.4555 µg mL?1 for isomer I and 0.0356 and 0.1078 µg mL?1 for isomer II, respectively.  相似文献   

18.
In this work, a novel ionic liquid (IL) chemically bonded sol–gel coating was prepared for stir bar sorptive extraction (SBSE) of nonsteroidal anti-inflammatory drugs (NSAIDs) followed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV). By using γ-(methacryloxypropyl)trimethoxysilane (KH-570) as a bridging agent, 1-allylimidazolium tetrafluoroborate ([AIM][BF4]) was chemically bonded onto the bare stir bar, and the prepared IL-bonded sol–gel stir bar coating showed higher extraction efficiency and better adsorption/desorption kinetics for target NSAIDs over other polydimethylsiloxane (PDMS)-based or monolithic stir bar coatings. The mechanical strength and durability (chemical/thermal stability) of the prepared IL-bonded sol–gel coating were excellent. The influencing factors of SBSE, such as sample pH, salt effect, stirring rate, extraction time, desorption solvent, and desorption time, were optimized, and the analytical performance of the developed SBSE-HPLC-UV method was evaluated under the optimized conditions. The limits of detection (LODs) of the proposed method for three NSAIDs were in the range of 0.23–0.31 μg L?1, and the enrichment factors (EFs) were in the range of 51.6–56.3 (theoretical enrichment factor was 100). The reproducibility was also investigated at concentrations of 5, 20, and 100 μg L?1, and the relative standard deviations (RSDs) were found to be less than 9.5, 7.5, and 7.6 %, respectively. The proposed method was successfully applied for the determination of NSAIDs in environmental water, urine, and milk samples. Graphical Abstract
?  相似文献   

19.
A method is described for the determination of plutonium concentration in the presence of a bulk of other impurities by isotope dilution mass spectrometry /IDMS/ using239Pu as a spike. The method involves the addition of239Pu spike / 90 atom%/ to samples with239Pu / 70 atom%/ and vice versa. After ensuring chemical exchange between the sample and the spike isotopes, plutonium is purified by conventional anion exchange procedure in 7M HNO3 medium.239Pu/240Pu atom ratio in the purified spiked sample is determined with high precision /better than 0.1%/ using a thermal ionization mass spectrometer. Concentration of plutonium in the sample is calculated from the changes in239Pu/240Pu atom ratio in the spiked mixture. Results obtained on different plutonium samples using239Pu as a spike are compared with those obtained by the use of242Pu spike. Precision and accuracy comparable to those achieved by using242Pu are demonstrated. The method provides an alternative in the event of non-availability of enriched242Pu or244Pu required in IDMS of plutonium and at the same time, offers certain advantages over the use of242Pu or244Pu spike.  相似文献   

20.
Methylisothiocyanate (MITC) is the main degradation product of metam sodium, a soil disinfectant widely used in agriculture, and is responsible for its disinfectant properties. Because MITC is highly toxic and volatile, metam sodium has to be applied in a manner that tries to reduce atmospheric emissions but still maintains adequate concentration of MITC in soil to ensure its disinfectant effect. Thus, monitoring of MITC concentrations in soil is required, and to this end sensitive, fast, and reliable analytical methods must be developed. In this work, a headspace solid-phase microextraction (HS-SPME) method was developed for MITC determination in water and soil samples using gas chromatography-tandem mass spectrometry (GC–MS–MS) with a triple-quadrupole analyzer. Two MS–MS transitions were acquired to ensure the reliable quantification and confirmation of the analyte. The method had linear behavior in the range tested (0.026–2.6 ng mL?1 in water, 1–100 ng g?1 in soil) with r 2 over 0.999. Detection limits were 0.017 ng mL?1 and 0.1 ng g?1 in water and soil, respectively. Recoveries for five replicates were in the range 76–92 %, and RSD was below 7 % at the two spiking levels tested for each matrix (0.1 and 1 ng mL?1 for water, 4 and 40 ng g?1 for soil). The potential of using multiple HS-SPME for analyzing soil samples was also investigated, and its feasibility for quantification of MITC evaluated. The developed HS-SPME method was applied to soil samples from experimental plots treated with metam sodium following good agriculture practices. Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号