首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The conjecture posed by Aujla and Silva [J.S. Aujla, F.C. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl. 369 (2003) 217-233] is proved. It is shown that for any m-tuple of positive-semidefinite n × n complex matrices Aj and for any non-negative convex function f on [0, ∞) with f(0) = 0 the inequality ?f(A1) + f(A2) + ? + f(Am)? ? ? f(A1 + A2 + ? + Am)? holds for any unitarily invariant norm ? · ?. It is also proved that ?f(A1) + f(A2) + ? + f(Am)? ? f(?A1 + A2 + ? + Am?), where f is a non-negative concave function on [0, ∞) and ? · ? is normalized.  相似文献   

2.
We prove the following two conjectures of Grünbaum on arrangements of curves in the Euclidean plane: (a) There is no arrangement of n curves such that 4n - 4<f2(A)<5n - 12. (b) There is no digon-free arrangement of n curves (n?36) such that 4n - 4<f2(A)<5n - 7. (f2(A) denotes the number of faces of the arrangement A.) Generalizing (a). we obtain: (c) For each k there is an integer n0 (depending on k) such that no arrangement of n curves (n ? n0) satisfies: kn-2k+4<f2(A)<(k+1)n-k(k-1).  相似文献   

3.
Givenf εC (n+1)[?1, 1], a polynomialp n, of degree ≤n, is said to be near-minimax if (*) $$\left\| {f - p_n } \right\|_\infty = 2^{ - n} |f^{(n + 1)} (\xi )|/(n + 1)!,$$ for some ζ ε (?1,1). For three sets of near-minimax approximations, by considering the form of the error ∥f ?p n in terms of divided differences, it is shown that better upper and lower bounds can be found than those given by (*).  相似文献   

4.
In this paper, we study growth and zeros of linear difference equations
Pn(z)f(z+n)+?+P1(z)f(z+1)+P0(z)f(z)=F(z)  相似文献   

5.
An investigation is made of the polynomials fk(n) = S(n + k, n) and gk(n) = (?1)ks(n, n ? k), where S and s denote the Stirling numbers of the second and first kind, respectively. The main result gives a combinatorial interpretation of the coefficients of the polynomial (1 ? x)2k+1Σn=0fk(n)xn analogous to the well-known combinatorial interpretation of the Eulerian numbers in terms of descents of permutations.  相似文献   

6.
We derive an error bound for fixed-point iterationsx n+1=f(x n ) by using monotonicity in the sense of [2]. The new bound is preferable to the classical one which bounds the error in terms of the Lipschitz constant off.  相似文献   

7.
Let r be a positive integer and f1,…,fr be distinct polynomials in Z[X]. If f1(n),…,fr(n) are all prime for infinitely many n, then it is necessary that the polynomials fi are irreducible in Z[X], have positive leading coefficients, and no prime p divides all values of the product f1(n)···fr(n), as n runs over Z. Assuming these necessary conditions, Bateman and Horn (Math. Comput.16 (1962), 363-367) proposed a conjectural asymptotic estimate on the number of positive integers n?x such that f1(n),…,fr(n) are all primes. In the present paper, we apply the Hardy-Littlewood circle method to study the Bateman-Horn conjecture when r?2. We consider the Bateman-Horn conjecture for the polynomials in any partition {f1,…,fs}, {fs+1,…,fr} with a linear change of variables. Our main result is as follows: If the Bateman-Horn conjecture on such a partition and change of variables holds true with some conjectural error terms, then the Bateman-Horn conjecture for f1,…,fr is equivalent to a plausible error term conjecture for the minor arcs in the circle method.  相似文献   

8.
For each non-negative integerna functionf=fnis constructed such thatfhas a continuous and non-negative derivativef′ onI :=[−1, 1] and[formula]whereEn(f′) (E(1)n+1(f)) is the value of the best uniform approximation onIof the functionf′ (f) by arbitrary (monotone onI) algebraic polynomials of degree ?n(n+1).  相似文献   

9.
Let ${f : \mathbb{N} \to \mathbb{C}}$ be a multiplicative function satisfying f(p 0) ≠ 0 for at least one prime number p 0, and let k ≥ 2 be an integer. We show that if the function f satisfies f(p 1 + p 2 + . . . + p k ) = f(p 1) + f(p 2) + . . . + f(p k ) for any prime numbers p 1, p 2, . . . ,p k then f must be the identity f(n) = n for each ${n \in \mathbb{N}}$ . This result for k = 2 was established earlier by Spiro, whereas the case k = 3 was recently proved by Fang. In the proof of this result for k ≥ 6 we use a recent result of Tao asserting that every odd number greater than 1 is the sum of at most five primes.  相似文献   

10.
We investigate value distribution and uniqueness problems of difference polynomials of meromorphic functions. In particular, we show that for a finite order transcendental meromorphic function f with λ(1/f)<ρ(f) and a non-zero complex constant c, if n?2, then fn(z)f(z+c) assumes every non-zero value aC infinitely often. This research also shows that there exist two sets S1 with 9 (resp. 5) elements and S2 with 1 element, such that for a finite order nonconstant meromorphic (resp. entire) function f and a non-zero complex constant c, Ef(z)(Sj)=Ef(z+c)(Sj)(j=1,2) imply f(z)≡f(z+c). This gives an answer to a question of Gross concerning a finite order meromorphic function f and its shift.  相似文献   

11.
A function f : N → R is called additive if f(mn)= f(m)+f(n)for all m, n with(m, n)= 1. Let μ(x)= max n≤x(f(n)f(n + 1))and ν(x)= max n≤x(f(n + 1)f(n)). In 1979, Ruzsa proved that there exists a constant c such that for any additive function f , μ(x)≤ cν(x 2 )+ c f , where c f is a constant depending only on f . Denote by R af the least such constant c. We call R af Ruzsa's constant on additive functions. In this paper, we prove that R af ≤ 20.  相似文献   

12.
For $n \in \mathbb{N}$ , the n-order of an analytic function f in the unit disc D is defined by $$\sigma _{{{M,n}}} (f) = {\mathop {\lim \sup }\limits_{r \to 1^{ - } } }\frac{{\log ^{ + }_{{n + 1}} M(r,f)}} {{ - \log (1 - r)}},$$ where log+ x  =  max{log x, 0}, log + 1 x  =  log + x, log + n+1 x  =  log + log + n x, and M(r, f) is the maximum modulus of f on the circle of radius r centered at the origin. It is shown, for example, that the solutions f of the complex linear differential equation $$f^{{(k)}} + a_{{k - 1}} (z)f^{{(k - 1)}} + \cdots + a_{1} (z)f^{\prime} + a_{0} (z)f = 0,\quad \quad \quad (\dag)$$ where the coefficients are analytic in D, satisfy σ M,n+1(f)  ≤  α if and only if σ M,n (a j )  ≤  α for all j  =  0, ..., k ? 1. Moreover, if q ∈{0, ..., k ? 1} is the largest index for which $\sigma _{M,n} ( a_{q}) = {\mathop {\max }\limits_{0 \leq j \leq k - 1} }{\left\{ {\sigma _{{M,n}} {\left( {a_{j} } \right)}} \right\}}$ , then there are at least k ? q linearly independent solutions f of ( $\dag$ ) such that σ M,n+1(f) = σ M,n (a q ). Some refinements of these results in terms of the n-type of an analytic function in D are also given.  相似文献   

13.
In this paper we give an integral representation of an n-convex function f in general case without additional assumptions on function f. We prove that any n-convex function can be represented as a sum of two (n+1)-times monotone functions and a polynomial of degree at most n. We obtain a decomposition of n-Wright-convex functions which generalizes and complements results of Maksa and Páles (2009) [13]. We define and study relative n-convexity of n-convex functions. We introduce a measure of n-convexity of f. We give a characterization of relative n-convexity in terms of this measure, as well as in terms of nth order distributional derivatives and Radon-Nikodym derivatives. We define, study and give a characterization of strong n-convexity of an n-convex function f in terms of its derivative f(n+1)(x) (which exists a.e.) without additional assumptions on differentiability of f. We prove that for any two n-convex functions f and g, such that f is n-convex with respect to g, the function g is the support for the function f in the sense introduced by W?sowicz (2007) [29], up to polynomial of degree at most n.  相似文献   

14.
Let (n k ) k≧1 be a lacunary sequence of positive integers, i.e. a sequence satisfying n k+1/n k > q > 1, k ≧ 1, and let f be a “nice” 1-periodic function with ∝ 0 1 f(x) dx = 0. Then the probabilistic behavior of the system (f(n k x)) k≧1 is very similar to the behavior of sequences of i.i.d. random variables. For example, Erd?s and Gál proved in 1955 the following law of the iterated logarithm (LIL) for f(x) = cos 2πx and lacunary $ (n_k )_{k \geqq 1} $ : (1) $$ \mathop {\lim \sup }\limits_{N \to \infty } (2N\log \log N)^{1/2} \sum\limits_{k = 1}^N {f(n_k x)} = \left\| f \right\|_2 $$ for almost all x ∈ (0, 1), where ‖f2 = (∝ 0 1 f(x)2 dx)1/2 is the standard deviation of the random variables f(n k x). If (n k ) k≧1 has certain number-theoretic properties (e.g. n k+1/n k → ∞), a similar LIL holds for a large class of functions f, and the constant on the right-hand side is always ‖f2. For general lacunary (n k ) k≧1 this is not necessarily true: Erd?s and Fortet constructed an example of a trigonometric polynomial f and a lacunary sequence (n k ) k≧1, such that the lim sup in the LIL (1) is not equal to ‖f2 and not even a constant a.e. In this paper we show that the class of possible functions on the right-hand side of (1) can be very large: we give an example of a trigonometric polynomial f such that for any function g(x) with sufficiently small Fourier coefficients there exists a lacunary sequence (n k ) k≧1 such that (1) holds with √‖f 2 2 + g(x) instead of ‖f2 on the right-hand side.  相似文献   

15.
Consider the (n+1)st order nonhomogeneous recursionX k+n+1=b k X k+n +a k (n) X k+n-1+...+a k (1) X k +X k .Leth be a particular solution, andf (1),...,f (n),g independent solutions of the associated homogeneous equation. It is supposed thatg dominatesf (1),...,f (n) andh. If we want to calculate a solutiony which is dominated byg, but dominatesf (1),...,f (n), then forward and backward recursion are numerically unstable. A stable algorithm is derived if we use results constituting a link between Generalised Continued Fractions and Recursion Relations.  相似文献   

16.
For functionsf(x) ε KH(α) [satisfying the Lipschitz condition of order α (0 < α < 1) with constant K on [?1, 1], the existence is proved of a sequence Pn (f; x) of algebraic polynomials of degree n = 1, 2,..., such that $$|f(x) - P_{n - 1} (f;x)| \leqslant \mathop {\sup }\limits_{f \in KH^{(\alpha )} } E_n (f)[(1 - x^2 )^{a/2} + o(1)],$$ when n → ∞, uniformly for x ε [?1, 1], where En(f) is the best approximation off(x) by polynomials of degree not higher than n.  相似文献   

17.
This is a continuation of our previous work. We classify all the simple ?q(D n )-modules via an automorphismh defined on the set { λ | Dλ ≠ 0}. Whenf n(q) ≠ 0, this yields a classification of all the simple ? q (D n)- modules for arbitrary n. In general ( i. e., q arbitrary), if λ(1) = λ(2),wegivea necessary and sufficient condition ( in terms of some polynomials ) to ensure that the irreducible ?q,1(B n )- module Dλ remains irreducible on restriction to ?q(D n ).  相似文献   

18.
Оператор Канторович а дляf∈L p(I), I=[0,1], определяе тся соотношением $$P_n (f,x) = (n + 1)\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)} x^k (1 - x)^{n - 1} \int\limits_{I_k } {f(t)dt,} $$ гдеI k=[k/(n}+1),(k+1)/(n+ 1)],n∈N. Доказывается, что есл ир>1 иfW p 2 (I), т.е.f абсол ютно непрерывна наI иf″∈L p(I), то $$\left\| {P_n f - f} \right\|_p = O(n^{ - 1} ).$$ Далее, установлено, чт о еслиfL p(I),p>1 и ∥P n f-fр=О(n ?1), тоf∈S, гдеS={ff аб-солютно непрерывна наI, x(1?x)f′(x)=∝ 0 x h(t)dt, гдеh∈L p(I) и ∝ 0 1 h(t)dt=0}. Если жеf∈Lp(I),p>1, то из условия ∥P n(f)?fpL=o(n?1) вытекает, чтоf постоянна почти всюду.  相似文献   

19.
The aim of this text is to calculate the p-adic valuation v p (f n ) where p is a prime number, and (f n ) n≥0 the Fibonacci sequence: f 0 = 0, f 1 = 1, f n+1 = f n + f n?1, n ≥ 1. We obtain this information “in one go” using the p-adic numbers; this enlights the nature of the (well known) result.  相似文献   

20.
In this paper, we prove the following result: Let f(z) and g(z) be two nonconstant meromorphic(entire) functions, n ≥ 11(n ≥ 6) a positive integer. If fn(z)f′(z) and gn(z)g′(z) have the same fixed-points, then either f(z) = c1ecz2g(z) = c2e− cz2, where c1c2, and c are three constants satisfying 4(c1c2)n + 1c2 = −1, or f(z) ≡ tg(z) for a constant t such that tn + 1 = 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号