首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hierarchical metal-free catalyst consisting of nitrogen-doped carbon nanotubes decorated onto a silicon carbide (N-CNTs/SiC) macroscopic host structure was prepared. The influence of N-CNTs incorporation on the physical properties of the support was evaluated using different characterization techniques. The catalyst was tested as a metal-free catalyst in the selective oxidation of H2S and steam-free dehydrogenation of ethylbenzene. The N-CNTs/SiC catalyst exhibited extremely good desulfurization performance compared to a Fe2O3/SiC catalyst under less conducive reaction conditions such as low temperature, high space velocity, and a low O2-to-H2S molar ratio. For the dehy-drogenation of ethylbenzene, a higher dehydrogenation activity was obtained with the N-CNTs/SiC catalyst compared to a commercial K-Fe/Al2O3 catalyst. The N-CNTs/SiC catalyst also displayed good stability as a function of time on stream for both reactions, which was attributed to the strong anchoring of the nitrogen dopant in the carbon matrix. The extrudate shape of the SiC support allowed the direct macroscopic shaping of the catalyst for use in a conventional fixed-bed reactor without the problems of catalyst handling, transportation, and pressure drop across the catalyst bed that are encountered with nanoscopic carbon-based catalysts.  相似文献   

2.
This study reports a noncovalent functionalization of MWCNTs with a fluorinated cross-linked polymer coating of poly[cyclotriphosphazene-co-(4,4'-(hexafluoroisopropylidene)diphenol)] and their application as the support of Pt for electrocatalytic oxidation of methanol.  相似文献   

3.
The MoO3-Fe2O3-Al2O3 catalysts were prepared from metal nitrates using a coprecipitation method. It was found that the modification of an alumina-iron catalyst with molybdenum oxide resulted in the formation of a solid solution based on hematite, in which a portion of iron ions was replaced by aluminum and molybdenum ions. The MoO3-Fe2O3-Al2O3 catalyst was reduced with a reaction mixture at 700°C. Under the action of 1,3-butadiene diluted with hydrogen, the solid solution based on hematite was initially converted into magnetite and then into an Fe-Mo alloy. The modification of an alumina-iron catalyst with molybdenum oxide considerably changed its properties in the course of carbon nanotube formation. As the Mo content was increased, the yield of carbon nanotubes passed through a maximum. The optimum catalyst was 6.5% MoO3–55% Fe2O3-Al2O3. The addition of small amounts of MoO3 (to 6.5 wt %) to the aluminairon catalyst increased the dispersity and modified the properties of active metal particles: because of the formation of an Fe-Mo alloy, the rate of growth decreased but the stability of carbon nanotube growth and the yield of the nanotubes increased. A further increase in the molybdenum content decreased the yield because molybdenum is inactive in the test process.  相似文献   

4.
《Chemical physics letters》2002,350(1-2):109-114
Single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) were synthesized on silicon substrate by the control of catalyst size, hydrocarbon species, and carbon flux through chemical vapor deposition (CVD). Catalysts for SWNTs and MWNTs could be obtained by an agglomeration of sputtered Co–Mo and pure Co thin films, respectively. The addition of Mo in the Co catalyst provides an effective nucleation site for SWNT and the low carbon flux by using methane gas in CVD reaction makes it possible to grow a single-walled structure.  相似文献   

5.
Thin films of Fe2O3 were obtained on silica glass substrates through the thermal decomposition of ferrocene in air. These films were characterized by Raman spectroscopy and X-ray diffractometry (XRD), and subsequently used as catalyst on the growth of carbon nanotubes, using benzene or a benzene solution of [Fe3(CO)12] as precursor. A great amount of a black powder was obtained as product, identified as multi-walled carbon nanotubes by XRD, Raman spectroscopy and transmission electron microscopy. The carbon nanotubes formed through the pyrolysis of the [Fe3(CO)12] solution were identified as structurally better than the one obtained by the pyrolysis of pristine benzene.  相似文献   

6.
A new catalyst support, polyoxometalate-modified carbon nanotubes, is presented in this paper through the chemisorption between polyoxometalate and carbon. Pt and Pt-Ru nanoparticles were electrochemically deposited on polyoxometalate-modified carbon nanotubes electrodes, and their electrocatalytic properties for methanol electro-oxidation are investigated in detail. Due to the unique electrical properties of carbon nanotubes and the excellent redox properties and the high protonic conductivity of polyoxometalate, for the similar deposition charge of Pt and Pt-Ru catalysts, 1.4 times larger exchange current density, 1.5 times higher specific activity, and better cycle stabilities can be obtained at polyoxometalate-modified carbon nanotube electrodes as compared to the electrodes without polyoxometalate modification. These results show that polyoxometalate-modified carbon nanotubes as a new catalyst support have good potential application in direct methanol fuel cells.  相似文献   

7.
Partially unzipped carbon nanotubes prepared by strong oxidation and thermal expansion of carbon nanotubes were explored as an advanced catalyst support for PEM fuel cells. The unique hybrid structure of 1D nanotube and 2D double-side graphene resulted in an outstanding electrocatalytic performance.  相似文献   

8.
A simple method is devised to deposit well-dispersed Pd nanoparticles on multi-walled carbon nanotubes (CNTs). Pd nanoparticles (1–3 nm) prepared in ethanol were transferred to toluene solution and modified by organic molecule benzyl mercaptan which acts as a cross linker between Pd nanoparticles and CNTs. The morphology and structure of the resulting Pd/CNT nanocomposite were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that Pd nanoparticles were highly dispersed and effectively anchored on CNTs. The excellent electrocatalytic activity of the Pd/CNT nanocomposite for the oxidation of hydrazine was demonstrated by cyclic voltammetry.  相似文献   

9.
We report the synthesis of a single-walled carbon nanotube (SWNT) graft copolymer. This polymer was prepared by the functionalization of SWNTs with polyethyleneimine (PEI). We used this graft copolymer, SWNT-PEI, as a substrate for cultured neurons and found that it promotes neurite outgrowth and branching.  相似文献   

10.
Motivated by the central importance of charge-induced dimensional changes for carbon nanotube electromechanical actuators, we here predict changes in nanotube length and diameter as a function of charge injection for armchair and zigzag nanotubes having different diameters. Density functional theory with periodic boundary conditions is used, which we show provides results consistent with experimental observations for intercalated graphites. Strain-versus-charge relationships are predicted from dimensional changes calculated with a uniform background charge ("jellium") for representing the counterions. These jellium calculations are consistent with presented calculations that include specific counterions for intercalated graphite, showing that hybridization between the ions and the graphite sheets is unimportant. The charge-strain relationships calculated with the jellium approximation for graphite and isolated single-walled nanotubes are asymmetric with respect to the sign of charge transfer. The dependence of nanotube strain on charge approaches that for a graphite sheet for intermediate-sized metallic nanotubes and for larger diameter semiconducting nanotubes. However, the strain-charge curves strongly depend on nanotube type when the nanotube diameter is small. This reflects both the dependence of the frontier orbitals for the semiconducting nanotubes on the nanotube type and the pi-sigma mixing when the nanotube diameter is small.  相似文献   

11.
Multiwalled carbon nanotubes (MWCNTs) were grown by chemical vapor deposition by applying C(2)H(2) fluxed over Fe(1)(-x)Co(x) catalyst supported by alkaline earth carbonate. Detailed investigations of the chemical process occurring prior and during the growth allowed us a significant improvement of the nanotube production rate and quality. We observed a strong influence of the catalyst stoichiometry on the carbon deposition rate and the nanotube characteristics. We also found evidence for the active role of the support in the growth process, which is explained by the decomposition of the carbonate at the growth temperature. Using the optimized parameters obtained from our study performed in a fixed bed furnace, we could improve the production rate to about 500 g/day of purified MWCNTs in our large-scale rotary tube furnace.  相似文献   

12.
Unbranched and branched carbon nanotubes (CNTs) were synthesized by catalytic chemical vapor deposition from methane at 900 °C over a Cu/MgO catalyst. Morphology and structure of the CNTs were characterized by scanning and transmission electron microscopy, and Raman spectroscopy. The effect of methane flow rate on the CNT growth was investigated. The results suggest that the products were transformed from unbranched to branched CNTs with an increase in methane flow rate. The simplicity and controllability of such a preparation technique make it a promising method to synthesize different carbon nanotube structures.  相似文献   

13.
A new approach to synthesize nitrogen-doped carbon nanotubes (NCNTs) as catalysts for oxygen reduction by treating oxidized CNTs with ammonia is presented. The surface properties and oxygen reduction activities were characterized by cyclic voltammetry, rotating disk electrode and X-ray photoelectron spectroscopy. NCNTs treated at 800 °C show improved electrocatalytic activity for oxygen reduction as compared with commercially available Pt/C catalysts.  相似文献   

14.
Chirality-controlled synthesis of single-walled carbon nanotubes (SWCNTs) is a prerequisite for their practical applications in electronic and optoelectronic devices. We report here a novel bimetallic CoPt catalyst for the selective growth of high quality SWCNTs with a narrow chirality distribution at relatively high temperatures of 800 °C and 850 °C using atmospheric pressure alcohol chemical vapor deposition. The addition of Pt into a Co catalyst forms a CoPt alloy and significantly reduces the diameters of the as-grown SWCNTs and narrows their chirality distributions.  相似文献   

15.
There have been several studies that suggest that catalyst metals in carbon nanotubes (CNTs) may pose a health threat. As there are many potential applications of CNTs in medicine, it is important to be able to quantitatively determine the amount of metal catalyst contained in a CNT sample. The relative catalyst content of carbon nanotube samples synthesized via arc-discharge has been determined at various stages of the purification process using X-ray fluorescence (XRF) analysis. Purification was achieved by immersing samples in heated nitric acid. The intensities of the nickel Kα X-rays were studied to determine the relative catalyst content in the samples. Scanning electron microscopy (SEM) images of purified nanotubes have been compared to the images of a sample that has been irradiated by 0-15 keV bremsstrahlung in order to determine if the XRF analysis of the nanotubes is in any way destructive. No obvious structural defects were observed as the result of irradiation.  相似文献   

16.
Nitrogen-doped bamboo-structured carbon nanotubes have been successfully grown using a series of cobalt/molybdenum catalysts. The morphology and structure of the nanotubes were analysed by transmission electron microscopy and Raman spectroscopy. The level of nitrogen doping, as determined by X-ray photoelectron spectroscopy, was found to range between 0.5 to 2.5 at.%. The growth of bamboo-structured nanotubes in the presence of nitrogen, in preference to single-walled and multi-walled nanotubes, was due to the greater binding energy of nitrogen for cobalt in the catalyst compared to the binding strength of carbon to cobalt, as determined by density functional theory.  相似文献   

17.
Single-walled carbon nanotubes (SWCNTs) were treated with sulfuric acid at 300 °C to synthesize sulfonated SWCNTs (s-SWCNTs), which were characterized by electron microscopy, infrared, Raman and X-ray photoelectron spectroscopy, and thermo analysis. Compared with activated carbon, more sulfonic acid groups can be introduced onto the surfaces of SWCNTs. The high degree (∼20 wt%) of surface sulfonation led to hydrophilic sidewalls that allows the SWCNTs to be uniformly dispersed in water and organic solvents. The high surface acidity of s-SWCNTs was demonstrated by NH3 temperature-programmed desorption technique and tested by an acetic acid esterification reaction catalyzed by s-SWCNTs. The results show that the water-dispersive s-SWCNTs are an excellent solid acid catalyst and demonstrate the potential of SWCNTs in catalysis applications.  相似文献   

18.
New carbon-nanotube–sputter-deposition-carbon (CNT–SDC) foils were developed and used in the U beam time at the RIKEN RI Beam Factory (RIBF) from October to December 2011. The lifetimes of these new foils were drastically extended, and stable, high-intensity U beams were successfully provided to users. The lifetime of the CNT–SDC foils was 2–5 C, which was 100 times longer than those of static C-foils previously used. The qualitative analysis of the CNT–SDC foils clearly showed that the CNT structure and bundles were broken by beam irradiation. In addition, it was found that CNT bundles in the CNT–SDC foil were grown after the carbon deposition procedure. This structure was considered to be the reason that the CNT–SDC foils maintain advantages of both CNT and SDC foils.  相似文献   

19.
Novel carbon composites are fabricated through catalyzed CVD growth of carbon nanotubes directly on the inner surfaces of monolithic carbon aerogel (CA) substrates. Uniform CNT yield is obtained throughout the internal pore volume of CA monoliths with macroscopic dimensions. These composites possess large surface areas (>1000 m(2) g(-1)) and exhibit enhanced electrical conductivity following CNT growth.  相似文献   

20.
以CTAB为模板剂,硅酸钠、氯化钴为原料,通过水热法合成含钴介孔分子筛(Co-MCM-41)。以所合成的Co-MCM-41做催化剂,采用化学气相沉积(CVD)法催化热解乙醇制备纳米碳管。通过XRD、FT-IR、TEM、N2吸附-脱附和Raman光谱等分析手段对所合成的介孔分子筛和纳米碳管进行了表征。结果表明:合成的Co-MCM-41样品具有MCM-41的介孔结构,比表面积较大且介孔有序性较好。以所合成的含钴介孔分子筛催化热解乙醇制备出管径均匀、管壁较厚、顶端开口的多壁纳米碳管。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号