首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Three-dimensional edge cracks are analyzed using the Self-Similar Crack Expansion (SSCE) method with a boundary integral equation technique. The boundary integral equations for surface cracks in a half space are presented based on a half space Green's function (Mindlin, 1936). By using the SSCE method, the stress intensity factors are determined by the crack-opening displacement over the crack surface. In discrete boundary integral equations, the regular and singular integrals on the crack surface elements are evaluated by an analytical method, and the closed form expressions of the integrals are given for subsurface cracks and edge crakcs. This globally numerical and locally analytical method improves the solution accuracy and computational effort. Numerical results for edge cracks under tensile loading with various geometries, such as rectangular cracks, elliptical cracks, and semi-circular cracks, are presented using the SSCE method. Results for stress intensity factors of those surface breaking cracks are in good agreement with other numerical and analytical solutions.  相似文献   

2.
A theoretical treatment of the scattering of anti-plane shear (SH) waves is provided by a single crack in an unbounded transversely isotropic electro-magneto-elastic medium. Based on the differential equations of equilibrium, electric displacement and magnetic induction intensity differential equations, the governing equations for SH waves were obtained. By means of a linear transform, the governing equations were reduced to one Helmholtz and two Laplace equations. The Cauchy singular integral equations were gained by making use of Fourier transform and adopting electro-magneto imperme ableboundary conditions. The closed form expression for the resulting stress intensity factor at the crack was achieved by solving the appropriate singular integral equations using Chebyshev polynomial. Typical examples are provided to show the loading frequency upon the local stress fields around the crack tips. The study reveals the importance of the electro-magneto-mechanical coupling terms upon the resulting dynamic stress intensity factor.  相似文献   

3.
横观各向同性材料的三维断裂力学问题   总被引:4,自引:0,他引:4  
陈梦成  张安哥 《力学学报》2006,38(5):612-617
从三维横观各向同性材料弹性力学理论出发, 使用Hadamard有限部积分概念, 导出了三维状态下单位位移间断(位错)集度的基 本解. 在此基础上, 进一步运用极限理论, 将任意载荷作用下, 三维无限大横观各向 同性材料弹性体中, 含有一个位于弹性对称面内的任意形状的片状裂纹问题, 归结为求 解一组超奇异积分方程的问题. 通过二维超奇异积分的主部分析方法, 精确地求得了裂纹前沿光滑点附近的应力奇异指数和奇异应力场, 从而找到了以裂纹表面位移间断表示的应力强度因子表达式及裂纹局部扩展所提供 的能量释放率. 作为以上理论的实际应用,最后给出了一个圆形片状裂纹问题 的精确解例和一个正方形片状裂纹问题的数值解例. 对受轴对称法向均布载荷作用下圆形片状裂纹问题, 讨论了超奇异积分方程的精确求解方法, 并获得了位移间断和应力强度因子的封闭解, 此结果与现有理论解完全一致.  相似文献   

4.
基于线性压电理论,本文获得了含有中心反平面裂纹的矩形压电体中的奇异应力和电场。利用Fourier积分变换和Fourier正弦级数将电绝缘型裂纹问题化为对偶积分方程,并进一步归结为易于求解的第二类Fred-holm积分方程。获得了裂纹尖端应力、应变、电位移和电场的解析解,求得了裂纹尖端场的强度因子及能量释放率。分析了压电矩形体的几何尺寸对它们的影响。结果表明,对于电绝缘型裂纹,裂纹尖端附近的各个场变量都具有-1/2阶的奇异性,能量释放率与电荷载的方向及大小有关,并且有可能为负值。  相似文献   

5.
In this paper the plane elasticity problem of two bonded dissimilar functionally graded strips containing an interface crack is studied.The governing equation in terms of Airy stress function is formulated and exact solutions are obtained for several special variations of material properties in Fourier transformation domain.The mixed boundary problem is reduced to a system of singular integral equations that are solved numerically.Numerical results show that fracture toughness of materials can be greatly improved by graded variation of elastic modulus and the influence of the specific form of elastic modulus on the fracture behavior of FGM is limited.  相似文献   

6.
利用两相材料中集中力的基本解,建立了求解曲线型刚性线夹杂和两相材料界面相交问题的弱奇异积分方程。通过Cauchy型奇异积分方程主部分析方法,得出穿过两相材料界面的曲线型刚线性在交点处的奇性应力指数及交点处角形域内的奇性应力,并利用奇性应力定义了交点处的应力奇异因子。通过对弱奇异积分方程的数值求解,得出了刚性线端点和交点处的应力奇异因子。  相似文献   

7.
A general formulation for evaluating the T-stress at crack tips in a curved crack is introduced. In the formulation, a singular integral equation with the distribution of dislocation along the curve is suggested. For a slightly curved crack, a small parameter is generally assumed for the crack configuration. By using the assumption for the small parameter, the perturbation method is suggested and it reduces the singular integral equation into many successive singular integral equations. If the cracked plate has a remote loading and the curve configuration is a quadratic function, the mentioned successive singular integral equations can be solved in a closed form. Therefore, the solution for the T-stress in a closed form is obtained. The obtained results for T-stress are shown by figures. It is found that if the involved parameter is not too small, the influence of the curve configuration is significant. Comparison for T-stresses obtained from a quadratic-shaped curved crack and an arc crack is presented.  相似文献   

8.
A theoretical treatment of the scattering of anti-plane shear (SH) waves is provided by a single crack in an unbounded transversely isotropic electro-magneto-elastic medium. Based on the differential equations of equilibrium, electric displacement and magnetic induction intensity differential equations, the governing equations for SH waves were obtained. By means of a linear transform, the governing equations were reduced to one Helmholtz and two Laplace equations. The Cauchy singular integral equations were gained by making use of Fourier transform and adopting electro-magneto impermeable boundary conditions. The closed form expression for the resulting stress intensity factor at the crack was achieved by solving the appropriate singular integral equations using Chebyshev polynomial. Typical examples are provided to show the loading frequency upon the local stress fields around the crack tips. The study reveals the importance of the electro-magneto-mechanical coupling terms upon the resulting dynamic stress intensity factor. Contributed by SHEN Ya-peng Foundation item: the National Natural Science Foundation of China (10132010, 50135030) Biographies: DU Jian-ke (1970∼)  相似文献   

9.
Fracture of a rectangular piezoelectromagnetic body   总被引:5,自引:0,他引:5  
The singular stress, electric fields and magnetic fields in a rectangular piezoelectromagnetic body containing a center Griffith crack under longitudinal shear are obtained. Fourier transforms and Fourier sine series are used to reduce the mixed boundary value problems of the crack, which is assumed to be impermeable, to dual integral equations. The solution of the dual integral equations is then expressed in terms of Fredholm integral equations of the second kind. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Also obtained are the field intensity factors and the energy release rates. Numerical results obtained show that the geometry of the rectangular body have significant influence on the field intensity factors and the energy release rates.  相似文献   

10.
折线型裂纹对SH波的动力响应   总被引:1,自引:0,他引:1  
利用Fourier积分变换方法,得出了无限平面中用裂纹位错密度函数表示的单裂纹散射场.根据无穷积分的性质,把单裂纹的散射场分解为奇异部分和有界部分.利用单裂纹的散射场建立了折线裂纹在SH波作用下的Cauchy型奇异积分方程.根据折线裂纹散射场和所得的积分方程讨论了裂纹在折点处的奇性应力及折点处的奇性应力指数.利用所得的奇性应力定义了折点处的应力强度因子.对所得Cauchy型奇积分方程的数值求解,可得裂纹端点和折点处的动应力强度因子。  相似文献   

11.
朱伯靖  秦太验 《力学学报》2007,39(4):510-516
应用有限部积分概念和广义位移基本解,垂直于磁压电双材料界面三维复合型裂纹问题被转 化为求解一组以裂纹表面广义位移间断为未知函数的超奇异积分方程问题. 进而,通过主部 分析法精确地求得裂纹尖端光滑点附近的奇性应力场解析表达式. 然后,通过将裂纹表面 位移间断未知函数表达为位移间断基本密度函数与多项式之积,使用有限部积分法对超奇异 积分方程组建立了数值方法. 最后,通过典型算例计算,讨论了广义应力强度因子的变化规 律.  相似文献   

12.
The elastostatic problem for cracked shallow spherical shell resting on linear elastic foundation is considered. The problem is formulated for a homogeneous isotropic material within the confines of a linearized shallow shell theory. By making use of integral transforms and asymptotic analysis, the problem is reduced to the solution of a pair of singular integral equations. The stress distribution obtained, around the crack tip, is similar to that of the elasticity solutions. The numerical results obtained agree well with those of previous work, where the elastic supports were neglected. The influences of the shell curvature and the modulus of subgrade reaction on the stress intensity factor are given.  相似文献   

13.
In this study, singular stress fields at the ends of fibers are discussed by the use of models of rectangular and cylindrical inclusions in a semi-infinite body under pullout force. Those singular stresses have not been discussed yet in the previous studies for pullout problems although they are important for causing interfacial initial debonding. The body force method is used to formulate those problems as a system of singular integral equations where unknowns are densities of the body forces distributed in a semi-infinite body having the same elastic constants as those of the matrix and inclusions. In order to compare the results with the previous solutions, tension problems of a fiber in a semi-infinite body are also considered. Then, generalized stress intensity factors at the corner of rectangular and cylindrical inclusions are systematically calculated for various geometrical conditions with varying the elastic ratio, length, and spacing of the location from edge to inner of the body. The effects of elastic modulus ratio and aspect ratio of inclusion upon the stress intensity factors are discussed for pullout problems.  相似文献   

14.
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in a rectangular duct with an external magnetic field applied transverse to the flow has been investigated. The walls parallel to the applied magnetic field are conducting while the other two walls which are perpendicular to the field are insulators. The boundary element method (BEM) with constant elements has been used to cast the problem into the form of an integral equation over the boundary and to obtain a system of algebraic equations for the boundary unknown values only. The solution of this integral equation presents no problem as encountered in the solution of the singular integral equations for interior methods. Computations have been carried out for several values of the Hartmann number (1 ? M ? 10). It is found that as M increases, boundary layers are formed close to the insulated boundaries for both the velocity and the induced magnetic field and in the central part their behaviours are uniform. Selected graphs are given showing the behaviours of the velocity and the induced magnetic field.  相似文献   

15.
弹性力学中一种新的边界轮廓法   总被引:3,自引:0,他引:3  
利用基本解的特性,将面力积分方程化成仅含有Cauchy主值积分的形式,基于这种边界积分方程,提出了一种新的边界轮廓法,对于三维问题,该方法只须计算沿边界单元界线的线积分,对二维问题,则只需计算边界单元两点的热函数之差,无须进行数值积分计算,实例计算说明该方法是有效的。  相似文献   

16.
Rudolf F. Stark 《Meccanica》2001,36(4):329-350
This paper addresses the derivation of the boundary integral equations for a non-homogeneous elastic half-space subjected to constant surface tractions on an arbitrarily shaped area on the basis of the respective Green's functions. The type of non-homogeneity considered is a power law variation of Young's modulus with depth below the surface of the half-space. Two different methods, a contour integral and an integration-free approach are presented, applicable for arbitrarily and rectangular shaped boundary elements, respectively. In the first one the divergence theorem is used in order to reduce the integration of a two-dimensional surface element to an integration over the element's confining boundary only. In the second approach no integration at all is needed since the solution is found simply by evaluating functions to be determined at the boundaries of the loaded rectangle.  相似文献   

17.
利用双材料位移基本解和Somigliana公式,将三维体内含垂直于双材料界面混合型裂纹问题归结为求解一组超奇异积分方程。使用主部分析法,通过对裂纹前沿应力奇性的分析,得到用裂纹面位移间断表示的应力强度因子的计算公式,进而利用超奇异积分方程未知解的理论分析结果和有限部积分理论,给出了超奇异积分方程的数值求解方法。最后,对典型算例的应力强度因子做了计算,并讨论了应力强度因子数值结果的收敛性及其随各参数变化的规律。  相似文献   

18.
提出了间接求解传统Helmholtz边界积分方程CBIE的强奇异积分和自由项系数,以及Burton-Miller边界积分方程BMBIE中的超强奇异积分的特解法。对于声场的内域问题,给出了满足Helmholtz控制方程的特解,间接求出了CBIE中的强奇异积分和自由项系数。对于声场外域对应的BMBIE中的超强奇异积分,按Guiggiani方法计算其柯西主值积分需要进行泰勒级数展开的高阶近似,公式繁复,实施困难。本文给出了满足Helmholtz控制方程和Sommerfeld散射条件的特解,提出了间接求出超强奇异积分的方法。推导了轴对称结构外场问题的强奇异积分中的柯西主值积分表达式,并通过轴对称问题算例证明了本文方法的高效性。数值结果表明,对于内域问题,采用本文特解法的计算结果优于直接求解强奇异积分和自由项系数的结果,且本文的特解法可避免针对具体几何信息计算自由项系数,因而具有更好的适用性。对于外域问题,两者精度相当,但本文的特解法可避免对核函数进行高阶泰勒级数展开,更易于数值实施。  相似文献   

19.
李冉  万永平 《力学季刊》2019,40(4):740-752
本文研究了含非完整界面的功能梯度压电复合材料的Ⅲ型裂纹问题.此裂纹垂直于非完整界面,采用弹簧型力电耦合界面模型模拟非完整界面.界面两侧材料的性质,如弹性模量、压电常数和介电常数均假定呈指数函数形式且沿着裂纹方向变化.运用积分变换法将裂纹面条件转换为奇异积分方程,并使用Gauss-Chebyshev方法对其进行数值求解.根据算例结果讨论了一些退化问题并分析了裂纹尖端强度因子与材料的非均匀系数和非完整界面参数的关系.  相似文献   

20.
彭凡  谢双双  戴宏亮 《力学学报》2019,51(2):494-502
研究蠕变加载条件下线黏弹性材料接触界面端附近的奇异应力场问题.考虑接触界面的摩擦,假设界面端的滑移方向不改变,相对滑移量微小,且其与位移同量级,由此线性化局部边界条件,根据对应原理得到Laplace变换域中的界面端应力场,导出时域中奇异应力场的卷积积分表达式.对卷积积分核函数进行数值反演,考虑接触材料的两类组合,一是持久模量具有量级上的差异,另一是持久模量接近相同.算例结果证实核函数可以用准弹性法求得的解析式较准确地近似.在此基础上,利用积分中值定理,并引入各应力分量的修正系数,得到黏弹性奇异应力场的简化式.结合核函数的数值反演结果分析修正系数表达式的取值范围,得到如下结论,若两相接触材料的持久模量相差很大,可以采用准弹性解的解析式较准确地描述界面端的奇异应力场;一般情况下,应力场不存在统一的奇异值和应力强度系数,当采用类似于准弹性解的表达式近似给出黏弹性应力场时,可以估计此近似描述的误差限.文中最后采用有限元分析黏弹性板端部嵌入部位的应力场,算例包括了黏弹性板与弹性金属支承、黏弹性板与黏弹性垫层所形成的滑移接触界面端,利用黏弹性有限元的数值结果验证理论分析所得结论的有效性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号