首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Single crystal electron paramagnetic resonance (EPR) studies were carried at room temperature for VO(II) doped zinc potassium phosphate hexahydrate. The results indicate that the paramagnetic impurity has entered the lattice only substitutionally, as confirmed by the single crystal rotations. The spin Hamiltonian parameters calculated from the spectra are g parallel = 1.9356, g perpendicular = 1.9764, A parallel = 200.9 G and A perpendicular = 76.5 G. The optical absorption spectrum exhibits three bands (800, 670 and 340 nm) suggesting the C4v symmetry and the optical parameters evaluated are Dq = 1492, Ds = -3854 and Dt = 186 cm(-1).  相似文献   

2.
Single crystal electron paramagnetic resonance (EPR) studies were carried at room temperature for VO(II) doped zinc potassium phosphate hexahydrate. The results indicate that the paramagnetic impurity has entered the lattice only substitutionally, as confirmed by the single crystal rotations. The spin Hamiltonian parameters calculated from the spectra are g//=1.9356, g=1.9764, A//=200.9 G and A=76.5 G. The optical absorption spectrum exhibits three bands (800, 670 and 340 nm) suggesting the C4v symmetry and the optical parameters evaluated are Dq=1492, Ds=−3854 and Dt=186 cm−1.  相似文献   

3.
Single crystal EPR studies on Cu(II) doped paramagnetic host lattices, hexaimidazole M(II) dichloride tetrahydrate (M=Co and Ni), isomorphous with M=Zn, have been carried out from room temperature to 77K to understand the nature of Jahn-Teller (JT) distortion in these paramagnetic host systems. The paramagnetic impurity, doped in the present two paramagnetic host lattices, shows anisotropic EPR spectra with superhyperfine from ligands, even at room temperature. An interesting observation noticed in the EPR spectra at room temperature is that there are more resonances corresponding to the second site in the paramagnetic hosts than in the diamagnetic host at 4.2K. This difference in behavior between the diamagnetic and paramagnetic host lattices indicates a change in the depth of the JT valleys. The spin Hamiltonian parameters are evaluated for Cu(II) ion in both the host lattices and the relaxation times have been calculated for the ion in cobalt host lattice only.  相似文献   

4.
Bis-(3-phenyl-5-pyridyl(2)-pyrazolato)-copper(II), [Cu(PPP)2], a brown paramagnetic nonionic chelate, is studied by ESR techniques in solution and as powder (diamagnetically diluted). The ESR spectra can be interpreted by means of a spin-Hamiltonian of axial symmetry. The bonding parameters of Cu–N bonds were calculated by interpretation of the g, Cu hfs and 14N-ligand hfs tensors. From these parameters follows that the degree of covalency of the s?- and π-bonds increases in comparision to other cationic copper(II) chelates (e.g. ethylenediamine complexes). These results are in good agreement with the chemical behaviour of [Cu(PPP)2].  相似文献   

5.
The electron paramagnetic resonance (EPR) g factors g(parallel), g(perpendicular) and hyperfine structure parameters A(parallel), A(perpendicular) of the tetragonal Er3+ centers in zircon-type compounds YXO4 (X = As, P, V), ScVO4 and RSiO4 (R = Zr, Hf, Th) are calculated from the perturbation formulas of EPR parameters for 4f11 ion in tetragonal symmetry. In these formulas, the second-order perturbation contributions are included in addition to the first-order perturbation contributions considered in the previous papers. The crystal-field parameters used in the calculations are obtained by analyzing the optical spectral data from the superposition model. Although the superposition model intrinsic parameters An(R0) used in this paper for Er3+ in various zircon-type compounds are not as scattered as those in the previous paper, the calculated results of both the optical spectra and EPR parameters show better agreement than those in the previous paper with the observed values, suggesting that the above calculation method and parameters are more reasonable. The contributions of the second-order perturbation terms to EPR parameters are also discussed.  相似文献   

6.
Single crystal EPR studies of VO(II)-doped cadmium potassium phosphate hexahydrate (CPPH) have been carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice only substitutionally in place of Cd(II). Spin Hamiltonian parameters have been obtained from single crystal data. Powder spectra show a set of eight parallel and perpendicular features indicating the presence of only one site. The admixture coefficients have been calculated from the data, which agree well with the literature values.  相似文献   

7.
The 1H n.m.r. spectra of some substituted oxa- and azatetracycloundecanes are studied and selected examples analysed in detail with the aid of spin-spin decoupling and Eu(fod)3 paramagnetic shift experiments. From the quoted 13C n.m.r. spectra the carbon resonances are assigned, using known substituent effects and paramagnetic shift values. The determined paramagnetic shift parameters ΔEu are discussed in respect of their contact and pseudocontact contributions.  相似文献   

8.
A combination of molecular mechanics (MM), electron paramagnetic resonance spectroscopy (EPR), and spectra simulation (MM-EPR) has been used to determine the solution structures of di- and trinuclear copper(II) complexes of melamine-based oligomacrocyclic ligands. The spin Hamiltonian parameters of the mononuclear, melamine-appended macrocyclic ligand copper(II) complex have been determined by EPR spectroscopy and were also studied with DFT methods. These spin Hamiltonian parameters, together with the structural parameters obtained from models optimized with MM, have been used for the simulation of the EPR spectra of the di- and trinuclear complexes. For the dinuclear complex, the syn isomer is preferred over the anti, for which an X-ray structure exists; for the trinuclear complex, the syn,syn isomer is preferred over the syn,anti form. Additional support for these assignments comes from DFT calculations, and this demonstrates that the MM-DFT-EPR method is a reliable approach for the determination of solution structures and for the analysis of spin Hamiltonian parameters of dipolar, coupled transition metal complexes (g and A tensors and J values).  相似文献   

9.
Single crystal EPR studies of VO(II)-doped magnesium potassium Tutton's salt have been carried out at room temperature. The results indicate that the paramagnetic impurity has entered the lattice, both substitutionally and interstitially and the maximum hyperfine for the substitutional site along the a axis corresponds to the minimum hyperfine for interstitial site and vice versa. The spin Hamiltonian parameters obtained from single crystal data for these sites are: Site 1, gparallel = 1.954(1); gperpendicular = 1.998(1), Aparallel = 19.80(2) mT; Aperpendicular = 7.61(2) mT; Site 2, gparallel = 1.997(1); gperpendicular = 1.952(1), Aparallel = 7.66(2) mT; Aperpendicular = 19.85(2) mT. Superhyperfine from ligand protons have been observed at certain orientations for Site 2 impurity. Powder spectrum shows a set of eight parallel and perpendicular features indicating the presence of only one site and these values matched with Site 1 values. From these observations, it has been concluded that the two vanadyl impurities are approximately at right angles to each other. Cooling the sample to 77 K does not change the spectra appreciably. The admixture coefficients have been calculated from Site 1 data, which agree well with the reported values.  相似文献   

10.
The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A(IV)(y) = |74| G, A(IV)(z) = |80| G.  相似文献   

11.
Electron paramagnetic resonance (EPR) spectra of VO2+ ions doped in Kainite (a mineral salt) single crystals and powder were recorded at room temperature at X-band frequencies.The angular variation studies of the spectra indicate that the VO2+ ion enters Mg2+ ion site substitutionally. The principal values of g and A-tensors were determined from the EPR spectral studies. Using these EPR parameters, the molecular orbital bonding parameters of VO2+ ion in the lattice have been evaluated and discussed.  相似文献   

12.
Single crystal EPR studies of VO(II)-doped magnesium potassium Tutton’s salt have been carried out at room temperature. The results indicate that the paramagnetic impurity has entered the lattice, both substitutionally and interstitially and the maximum hyperfine for the substitutional site along the a axis corresponds to the minimum hyperfine for interstitial site and vice versa. The spin Hamiltonian parameters obtained from single crystal data for these sites are: Site 1, g||=1.954(1); g=1.998(1), A||=19.80(2) mT; A=7.61(2) mT; Site 2, g||=1.997(1); g=1.952(1), A||=7.66(2) mT; A=19.85(2) mT. Superhyperfine from ligand protons have been observed at certain orientations for Site 2 impurity. Powder spectrum shows a set of eight parallel and perpendicular features indicating the presence of only one site and these values matched with Site 1 values. From these observations, it has been concluded that the two vanadyl impurities are approximately at right angles to each other. Cooling the sample to 77 K does not change the spectra appreciably. The admixture coefficients have been calculated from Site 1 data, which agree well with the reported values.  相似文献   

13.
Previous kinetic characterization of the glutamate 151 (E151)-substituted forms of the leucine aminopeptidase from Aeromonas proteolytica (Vibrio proteolyticus; AAP) has provided critical evidence that this residue functions as the general acid/base. The close proximity of similar glutamate residues to the bridging water/hydroxide of the dinuclear active sites of metalloenzymes (2.80 and 3.94 angstroms in carboxypeptidase G2 and 3.30 and 3.63 angstroms in AAP), suggests it may also be involved in stabilizing the active-site metal ions. Therefore, the structural perturbations of the dinuclear active site of AAP were examined for two E151-substituted forms, namely E151D-AAP and E151A-AAP, by UV-vis and electron paramagnetic resonance (EPR) spectroscopy. UV-vis spectroscopy of Co(II)-substituted E151A-AAP did not reveal any significant changes in the electronic absorption spectra. However UV-vis spectra of mono- and dicobalt(II) E151D-AAP exhibited a lower molecular absorptivity compared to AAP (23 and 43 M(-1) cm(-1) vs. 56 and 109 M(-1) cm(-1) for E151D-AAP and AAP, respectively) suggesting both Co(II) ions reside in distorted octahedral coordination geometry in E151D-AAP. EPR spectra of [Co_(E151D-AAP)], [ZnCo(E151D-AAP)], and [(CoCo(E151D-AAP)] were identical, with g(perpendicular) = 2.35, g(parallel) = 2.19, and E/D = 0.19, similar to [CoCo(AAP)]. On the other hand, the EPR spectrum of [Co_(E151A-AAP)] was best simulated assuming the presence of two species with (i) g(x,y) = 2.509, g(z) = 2.19, E/D = 0.19, A = 0.0069 cm(-1) and (ii) g(x,y) = 2.565, g(z) = 2.19, E/D = 0.20, A = 0.0082 cm(-1) indicative of a five- or six-coordinate species. Isothermal titration calorimetry experiments revealed a large decrease in Zn(II) affinities, with K(d) values elevated by factors of approximately 850 and approximately 24,000 for the first metal binding events of E151D- and E151A-AAP, respectively. The combination of these data indicates that E151 serves to stabilize the dinuclear active site of AAP.  相似文献   

14.
The electron paramagnetic resonance spectroscopic investigation of VO(II)-doped zinc ammonium trihydrogen bis(orthophosphate) monohydrate single crystal has been carried out at 300K. The single crystal, rotated along the three orthogonally crystallographic axes, have yielded spin Hamiltonian parameters g and A as: g(xx)=1.978, g(yy)=1.974, g(zz)=1.925 and A(xx)=7.4, A(yy)=7.8, A(zz)=19.4 mT. These spin Hamiltonian parameters reflect a slight deviation from axially symmetry to rhombic, which is elucidated by the interstitial occupation of the vanadyl ion. The isofrequency plots and EPR spectra at few orientations have been simulated using the calculated spin Hamiltonian parameters. The Fermi contact parameter (kappa) and dipolar interaction parameter (P) have been calculated as 0.857 and -128 x 10(-4)cm(-1), respectively. The percentage of metaloxygen bond has been identified as 20%.  相似文献   

15.
Mn(II), Co(II), Ni(II) and Cu(II) complexes of 5‐mercapto‐1,2,4‐triazol‐3‐imine‐2′‐hydroxynaphthaline have been synthesized and characterized by elemental analysis, IR, 1H NMR, EI‐mass, UV‐Vis, and ESR (electron spin resonance) spectra, molar conductance, magnetic moment measurements, DC conductivity and thermogravimetric analysis. IR spectra confirm that the ligand molecule existed in both thione and thiole forms. The molar conductance values indicate the complexes are nonelectrolyte. The magnetic moment values of the complexes display paramagnetic behavior. All studies confirm the formation of an octahedral geometry for complex 1 and the other complexes have tetrahedral geometrical structures. The structures of the complexes have also been theoretically studied by using the molecular mechanic calculations by the hyperchem. 8.03 molecular modeling program which confirm the proposed structures. The Schiff‐base ligand and its metal complexes have also been screened for their antimicrobial activities.  相似文献   

16.
VO(2+) doped single crystal of Ba(2)Zn(HCOO)(6)(H2O)(4) (BZFA) were investigated using electron paramagnetic resonance (EPR) technique at ambient temperature. Detailed investigation of EPR spectra indicated that the VO(2+) substitutes the Zn(2+) in the structure. The sites with different orientations were observed for VO(2+) in Ba(2)Zn(HCOO)(6)(H2O)(4).single crystal, but the only intense site among these sites was evaluated to obtain spin-Hamiltonian parameters, which are the principal axis values of the g and the hyperfine tensors. The covalent bonding parameter for VO(2+) and Fermi contact term were calculated using the spin-Hamiltonian parameters.  相似文献   

17.
ESR spectra of VO(II)‐serine(Ser)‐phen system in binary solvent glycol/water (V/ V = 1:1) solution at various acidities (pH= 1‐14) have been observed at low temperature. It was found that in different pH ranges different structural complexes were formed. According to Johnson's rule and IR, their possible structures were suggested. The bonding parameters of complexes were calculated from ESR parameters. It can be seen that the or values of complexes decrease following the increasing of an N donor replacing the O donor of water on the equatorial plane in the complexes. This means that the covalent bonding between vanadium and ligands increases as amino and phen ligands replace water ligands. The crystal field parameters were calculated by using electronic spectral data. The coordination law was discussed. It was obtained that the coordination reactivity of phen is much stronger than that of Ser.  相似文献   

18.
Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.  相似文献   

19.
The electron paramagnetic resonance (EPR) spectra of gamma irradiated single crystals of alpha-benzoinoxime (ABO) have been examined between 120 and 440 K. Considering the dependence on temperature and the orientation of the spectra of single crystals in the magnetic field, we identified two different radicals formed in irradiated ABO single crystals. To theoretically determine the types of radicals, the most stable structure of ABO was obtained by molecular mechanic and B3LYP/6-31G(d,p) calculations. Four possible radicals were modeled and EPR parameters were calculated for the modeled radicals using the B3LYP method and the TZVP basis set. Calculated values of two modeled radicals were in strong agreement with experimental EPR parameters determined from the spectra. Additional simulated spectra of the modeled radicals, where calculated hyperfine coupling constants were used as starting points for simulations, were well matched with experimental spectra.  相似文献   

20.
Single crystal electron paramagnetic resonance (EPR) studies of Cu(II) doped cobalt ammonium phosphate hexahydrate have been carried out from 300 to 77 K, with single crystal rotation in all the three planes at 153 K, since the spectra are well resolved at this temperature. The angular variation studies indicate only one site in substitutional position with spin-Hamiltonian parameters as g: 2.404, 2.155, 2.063 and A: 11.58, 3.49, 2.07 mT. The reduction in one of the principal A value has been explained by considering considerable admixture of d(x(2)-y(2)) ground state with d(zeta(2)) excited state. The admixture coefficients of ground state wave function are: a = 0.2500; b = 0.9663; c = 0.0520; d = 0.0210; e = -0.0210, where a and b correspond to admixture coefficients for d(zeta(2)) and d(x(2)-y(2)) , respectively. Parameters kappa = 0.5140; P = 113 X 10(-4) cm(-1); alpha(2) = 0.7897; alpha = 0.8887; and alpha' = 0.5262 have also been calculated, indicating considerable covalency. The powder spectrum at room temperature is unresolved, whereas it is better resolved at 77 K, with spin-Hamiltonian parameters matching well with the single crystal values of 153 K. Powder spectrum at 77 K has been simulated, which agrees with the experimental one. The spin-lattice relation times are measured from the line width of the resonance lines recorded at different temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号