首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CoFe2O4/TiO2 magnetic composite films were prepared using the sol-gel method with tetrabutyltitanate and metallic chlorates as starting materials. The effects of heat treatment temperatures on microstructures and on magnetic properties were studied. The microstructure and properties of the samples at different heat treatment temperatures were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, polarized microscopy and vibrating sample magnetometry. The results show that crystals of different substances grow up independently. Cobalt ferrite is evenly embedded into the titanium dioxide matrix in the prepared composite films. The magnetism of the composite films is enhanced with an increase of the heat temperature. Supported by the National Natural Science Foundation of China (Grant Nos. 50632030 and 10474077), and the Natural Science Foundation of Shaanxi Province (Grant No. 2006E135)  相似文献   

2.
We studied the gasochromic effect of amorphous peroxopolytungstic acid (W-PTA), W-PTA (ormosil) and crystalline WO3 films. These latter films were prepared after a heat treatment of W-PTA/ormosil films at 450°C. The ormosil served as a template, providing the monoclinic WO3 films with adequate porosity. The spill-over effect was attained by impregnating the porous WO3 crystalline films with H2PtCl6 followed by a heat treatment at 380°C. The amorphous films became gasochromic with the addition of PdCl2 to the corresponding W-PTA and W-PTA/ormosil sols.Structural features of all the films were studied with the help of infrared (IR) spectroscopy and transmission electron microscopy (TEM). In situ IR spectra of the films, performed in the presence of reducing (H2/Ar) and oxidising (O2/Ar) gases, revealed a reversible transformation of the monoclinic to the tetragonal H x WO3 phase. At the same time the coloration (reduction) of the amorphous films was accompanied by the formation of coordinated water molecules and increased numbers of W=O bonds. Gasochromic colouring/bleaching changes and the corresponding kinetics were assessed from in situ UV-visible transmission measurements on the films.  相似文献   

3.
Fabrication of ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thick films on a Pt/Ti/SiO2/Si substrate using powder-mixing sol-gel spin coating and continuous wave CO2 laser annealing technique to treat the specimens with at a relatively low temperature was investigated in the present work. PZT fine powders were prepared by drying and pyrolysis of sol-gel solutions and calcined at temperatures from 400 to 750°C. After fine powder-containing sol-gel solutions were spin-coated on a substrate and pyrolyzed, CO2 laser annealing was carried out to heat treat the specimens. The results show that laser annealing provides an extremely efficient way to crystallize the materials, but an amorphous phase may also form in the case of overheating. Thicker films absorb laser energy more effectively and therefore melt at shorter periods, implying a significant volume effect. A film with thickness of 1 μm shows cracks and rough surface morphology and it was difficult to obtain acceptable electrical properties, indicating importance of controlling interfacial stress and choosing appropriate size of the mixing powders. On the other hand, a thick film of 5 μm annealed at 100 W/cm2 for 15 s exhibits excellent properties (P r = 36.1 μC/cm2, E c = 19.66 kV/cm). Films of 10 μm form a melting zone at the surface and a non-crystallized bottom layer easily at an energy density of 100 W/cm2, showing poor electrical properties. Besides, porosity and electrical properties of thick films can be controlled using appropriate processing parameters, suggesting that CO2 laser annealing of modified sol-gel films is suitable for fabricating films of low dielectric constants and high crystallinity.  相似文献   

4.
The preparation of SiO2-M x O y (M = V, Sn, Sb) binary oxide thin films by sol-gel method was investigated. The reaction of silicic acid with metal chloride (M = Sn and Sb) or oxychloride (M = V) formed homogeneous solutions. The dip-coating of slide glass and silicon wafer followed by heat treatment gave oxide films having Si—O—M bond. The changes of FT-IR spectra as a function of heat treatment temperature and molar composition confirmed the Si—O—M bonds. The sheet resistance of films increased with an increase on heat treatment temperature and decrease in the content of metal oxide M x O y . X-ray diffraction peaks were observed for the SiO2-V2O5 films with high V2O5 contents and heat-treated above 250°C, while the others were amorphous. Oxide films heat treated at 500°C had a thickness between 340–470 nm.  相似文献   

5.
A series of Bismuth-doped titanium oxide (Bi-doped TiO2) thin films on glass substrates have been prepared by sol-gel dip coating process. The prepared catalysts were characterized by XRD and XPS. The photocatlytic activity of the thin film catalysts was evaluated through the photodegradation of aqueous methyl orange under UV illumination. The experiments demonstrated that the Bi-doped TiO2 prepared was anatase phase. The doped bismuth was in the 3+ oxidation state. The presence of Bi significantly enhanced the photocatalytic activity of TiO2 films. At calcination temperature of 500°C, with doping concentration of 2 wt %, Bi-doped TiO2 thin film showed the highest photocatalyic activity.  相似文献   

6.
Fe-doped SrBi2Nb2O9 precursor solution was synthesized using bismuth nitrate Bi(NO3)3·5H2O, strontium nitrate Sr(NO3)2, iron nitrate Fe(NO3)3·9H2O, and niobium ethoxide Nb(OC2H5)5 as starting materials, ethylene glycol monomethyl ether (C3H8O2) as the solvent. 0.1BiFeO3-0.9SrBi2Nb2O9 thin films were prepared on fused quartz substrates using sol-gel processing. The surface morphology and crystal structure and optical properties of the thin films were investigated. The thin film annealing at 400°C were found to be amorphous, and the thin films crystallize to a perovskite structure after a post-deposition annealing at 600°C for 1 h in air. The grain of thin film was evenly distributed. The thin films exhibit the designed optical transmission, while the optical transition is indirect in nature. Their optical band gap is about 2.5 eV.  相似文献   

7.
We have successfully prepared transparent and porous anatase nanocrystals-dispersed films by treating the sol-gel derived TiO2-SiO2 films containing poly(ethylene glycol), PEG, with hot water. This process was done at temperatures lower than 100°C under atmospheric pressure, and thus anatase nanocrystals-dispersed films can be formed on various kinds of substrates including organic polymers with poor heat resistance. The changes in structure and composition of the TiO2-SiO2 gel films with hot water treatment were related to the formation process of anatase nanocrystals in the TiO2-SiO2 gel films with hot water treatment. The formation of anatase nanocrystals was found to proceed to hydrolysis of Si–O–Ti bonds and dissolution of SiO2 component. In addition, porous film structure formed by leaching of PEG with hot water treatment led to homogenous dispersion of anatase nonocrystals in the films.  相似文献   

8.
Phase pure powder and thin films of the novel ferroelectric materials SrBi2Ta2O9 (SBT) have been prepared using the organic precursors. The xero-gel formed was dried and characterized using TGA and DTA to determine the organic burn out and crystallization temperature of SBT. Powder X-ray diffraction was used systematically to check the crystallinity of SBT. Phase pure SBT powder was formed as low as 650°C and thin films at 600°C in comparison to other earlier reported work. SEM micrographs show a grain size of ≈0.1 μm and show crack free films with a film thickness of 2 μm.  相似文献   

9.
Investigation of RuO2-IrO2-SnO2 thin film evolution   总被引:2,自引:0,他引:2  
The thermal evolution process of RuO2–IrO2–SnO2 mixed oxide thin films of varying noble metal contents has been investigated under in situ conditions by thermogravimetry-mass spectrometry (TG-MS), infrared emission spectroscopy (IR) and cyclic voltammetry (CV). The gel-like films prepared from aqueous solutions of the precursor compounds RuOHCl3, H2IrCl6 and Sn(OH)2(CH3COO)2–xClx on titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600°C. Chlorine evolution takes place in a single step between 320 and 500°C accompanied with the decomposition of the acetate ligand. The decomposition of surface species formed like carbonyls, carboxylates and carbonates occurs in two stages between 200 and 500°C. The temperature of chlorine evolution and that of the final film formation increases with the increase of the iridium content in the films. The anodic peak charge shows a maximum value at 18% iridium content.  相似文献   

10.
TiO2/polypyrrole (PPy) nanocomposite ultrathin films for NH3 gas detection were fabricated by the in situ self-assembly technique. The films were characterized by UV–Vis absorption, FT–IR spectroscopy, and atomic force microscopy (AFM). The electrical properties of TiO2/PPy ultrathin film NH3 gas sensors, such as sensitivity, selectivity, reproducibility, and stability were investigated at room temperature in air as well as in N2. The results showed that the optimum gas-sensing characteristics of TiO2/PPy ultrathin film were obtained in the presence of 0.1?wt% colloidal TiO2 for 20-min deposition. Compared with pure PPy thin-film sensors, the TiO2/PPy film gas sensor has a shorter response/recovery time. It was also found that both humidity and temperature had an effect on the operation of the TiO2/PPy film gas sensor at low NH3 concentrations.  相似文献   

11.
Nanocrystalline TiO2 thin films on silica glass substrates were prepared by using a naphthenic acid precursor. As-deposited thin films were heat treated at 500, 600, 700 and 800C for 30 min in air. The TiO2 thin films were analyzed by High Resolution X-ray diffraction, ultra violet—visible—near infrared spectrophotometer, field emission—scanning electron microscope and scanning probe microscope. After annealing at 600 and 700C, the XRD patterns consist of only anatase peaks of TiO2 film. Rutile(110) peak begins to appear at an annealing temperature of 800C. Relative high transmittance at visible range was obtained for all films except the film annealed at 800C. Optical band gap, Eg, is in the range between 3.53 and 3.78 eV except the TiO2 film annealed at 500C. The best hydrophilicity was achieved with a high-temperature annealing.  相似文献   

12.
New alkali resistant BaO-TiO2-SiO2 coatings have been developed via the sol-gel process. In the solutions and in the gels (T<300°C) an infrared absorption band at 930 cm–1 gives the possible evidence of mixed Si-O-Ti bonds, which have not been found in the system SiO2-TiO2-ZrO2. Baking the films at about 500°C for less than 1 h leads to stable layers with negligible residual carbon contents. Compositions near 20 BaO-40 TiO2-40 SiO2 showed the best performance.  相似文献   

13.
In this work TiO2-SiO2 xerogels were prepared through an ultra low hydrolysis method using titanium and silicon alkoxide. The samples were heat treated to 500°C. The xerogels were characterized using TGA/DTA, FTIR, XRD and TEM. The samples showed the formation of Si–O–Ti bridges by its characteristic vibration within 925–960 cm−1 range. Si–O–Si bond angles were calculated using the central force network model. The TiO2 in all the samples crystallized on heat treatment to 500°C. The crystallite size calculated using the Scherer formula from the XRD was verified from the Transmission Electron Micrograph. Samples heat treated to 350°C remained amorphous and hence could be used as hosts for biomaterials and organic optical materials.  相似文献   

14.
Bismuth sulfide (Bi2S3) thin films were electrodeposited from non-aqueous dimethyl sulfoxide medium containing Bi(NO3)3 and thiourea as the precursor salts, triethanol amine as the complexing agent, and TritonX-100 as the surface active agent. The prepared films were subjected to rigorous experimentation in order to validate their potential candidature for solar cells. The films exhibited band gap energy of ∼1.3 eV and resistivity of the order of 2 × 106 Ω cm at room temperature as was obtained from UV–Vis spectroscopy and four-probe measurements, respectively. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and energy dispersive analysis of X-ray were employed to reveal the morphology, structure, and chemical composition of the film matrix. The Bi2S3 films were found to be non-decomposable up to the temperature of 1,000 °C with the help of thermogravimetry–differential thermal analysis. The Nyquist and Mott–Schottky plots derived from electrochemical impedance spectroscopy measurements provided important information regarding electrical and semiconducting properties of the films. The n-type film with a donor density of the order of ∼1023 m−3 displayed reasonable photoactivity under illumination and is recommended as a promising candidate for potential photoelectrochemical applications.  相似文献   

15.
La2Mo2O9 films were successfully synthesized on silicon (100) and poly-alumina substrates via modified sol–gel method with inorganic salts of La(NO3)3 and (NH4)6Mo7O24 as precursors. Pure La2Mo2O9 phase was confirmed by XRD if the annealing temperature was higher than 500 °C. Energy dispersive spectrometry (EDS) of TEM revealed that the molar ratio of La to Mo was nearly 1:1. Field-emission SEM characterization showed that the films were dense, crack-free and uniform. The grain size of the films ranged from 30 to 400 nm depending upon the calcination temperature and duration time. The roughness calculated from AFM topography varied in the range between 10 and 35 nm. The thickness of the films was more than 200 nm for single-layered films. The electrical conductivity of the films reaches 0.06 S/cm at 600 °C that was almost more than one order of magnitude higher than that of the corresponding bulk material.  相似文献   

16.
Jing Sui  Wei Li 《Soft Materials》2018,16(3):201-208
Pt nanoparticles (PtNPs)/polypyrole (PPy) composites were successfully prepared through a facile one-pot interfacial polymerization of pyrrole by using H2PtCl6 as the oxidant for the first time. The as-prepared PPy was granular particles with particle size within a few hundred nanometers, on which PtNPs (1.7–3.5) nm were homogeneously dispersed. The PtNPs/PPy composites displayed excellent electrocatalytic activity toward redox of H2O2. The non-enzyme sensor constructed with PtNPs/PPy composites displayed good sensing ability toward H2O2 at ?0.1 V with a significantly high sensitivity of 6056 μAmM?1cm?2 and a low detection limit of 1.8 μM (S/N = 3).  相似文献   

17.
Fluorine-doped tin dioxide (FTO) films were deposited on silicon wafers by inverted pyrosol technique using solutions with different doping concentration (F/Sn=0.00, 0.12, 0.75 and 2.50). The physical and electrical properties of the deposited films were analyzed by SEM, XRF, resistivity measurement by four-point-probe method and Hall coefficient measurement by van der Pauw method. The electrical properties showed that the FTO film deposited using the solution with F/Sn=0.75 gave a lowest resistivity of 3.2·10–4 ohm cm. The FTO films were analyzed by temperature programmed desorption (TPD). Evolved gases from the heated specimens were detected using a quadruple mass analyzer for mass fragments m/z, 1(H+), 2(H2 +), 12(C+), 14(N+), 15(CH3 +), 16(O+), 17(OH+ or NH3 +), 18(H2O+ or NH4 +), 19(F+), 20(HF+), 28(CO+ or N2 +), 32(O2 +), 37(NH4F+), 44(CO2 +), 120(Sn+), 136(SnO+) and 152(SnO2 +). The majority of evolved gases from all FTO films were water vapor, carbon monoxide and carbon dioxide. Fluorine (m/z 19) was detected only in doped films and its intensity was very strong for highly-doped films at temperature above 400°C.  相似文献   

18.
Ground-based ambient air monitoring was conducted at five different locations in and around Patiala city (29°49′–30°47′N Latitude, 75°58′–76°54′E Longitude) in Northern India in order to determine the impact of open burning of rice (Oriza sativa) crop residues on concentration levels of suspended particulate matter (SPM), sulphur dioxide (SO2) and nitrogen dioxide (NO2). Covering sensitive, residential, agricultural, commercial and urban areas, sampling of these pollutants was organised during August 2006 to January 2007 and August 2007 to January 2008 casing two rice crop residue burning periods (October–November) using a high volume sampling technique combined with gaseous sampling systems. Gravimetric analysis was used in the estimation of total suspended particulate matter (TSPM) whereas SO2 and NO2 concentration was determined using spectrophotometer (Specord205, Analytikjena). Monthly average concentrations of SPM, SO2 and NO2 have shown significant up and down features at all the selected sampling sites during the study period. Monthly average concentrations (24 hour) of SPM, SO2 and NO2 varied from 100 ± 11 µg m?3 to 547 ± 152 µg m?3, 5 ± 4 µg m?3 to 55 ± 34 µg m?3 and 9 ± 5 µg m?3 to 91 ± 39 µg m?3. Substantially higher concentrations were recorded at the commercial area site as compared to the other sampling sites for all the targeted air pollutants. Levels of SPM, SO2 and NO2 showed clear increase during the burning months (October–November) incorporated with the effect of meteorological parameters especially wind direction, precipitation and atmospheric temperature.  相似文献   

19.
In this work, polycarbonate-TiO2 nanocomposite films were prepared with different percentages. The aim was to consider the effect of O2 LF plasma (50 Hz) on the hydrophilicity, surface energy, and surface morphology of polycarbonate and polycarbonate-TiO2 nanocomposite. Structure of samples was determined by using X-ray diffraction analysis. In comparison with the reference sample, the samples’ structure did not change after plasma treatment. Surface properties of polycarbonate and polycarbonate-TiO2 nanocomposite films were studied by X-ray photoelectron spectroscopy (XPS), contact angle measurement, atomic force microscopy (AFM), and Vickers microhardness tester. XPS analysis showed that the surface of samples became more oxidized due to plasma treatment. The water contact angle significantly decreased from 88° to 15° after plasma treatment. It was observed that the hardness of the nanocomposite films was not modified after plasma treatment.  相似文献   

20.
In this work Cu2ZnSnS4 (CZTS) suitable for the absorption layer in solar cells was successfully prepared by sol–gel spin-coated deposition. CZTS precursors were prepared by using solutions of copper (II) chloride, zinc (II) chloride, tin (IV) chloride, and thiourea. Texture structures with kesterite crystallinity reflected from the X-ray diffraction of (112), (200), and (312) planes of the CZTS were obtained as synthesized at a temperature of over 240 °C. The absorption coefficients of the CZTS films are higher than 104 cm−1, and the optical-energy gap is about 1.5 eV. Without sulfurization treatment, a near stoichiometry composition of the CZTS is obtained at a synthesizing temperature of 280 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号