首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ordered phase of the most part of ABX3 antiferromagnets appears as a stacking of 120°-three sublattice spin layers with alternate spin direction along thec-axis. This configuration is easy to be explained because it is the minimum energy configuration of the Heisenberg hexagonal model with nearest neighbour antiferromagnetic interaction. However we show that moderate competitive interactions between in plane next nearest and third nearest neighbours stabilize incommensurate spin configurations. This gives some insight into the unexplained spin configuration observed in RbMnBr3 by elastic neutron scattering experiment.  相似文献   

2.
Bulk polycrystalline samples of Eu2O3-doped MgB2 have been synthesized by a standard solid state reaction route and their structural and superconducting properties have been investigated. As a function of Eu2O3 content we have found a significant increase in the critical current density (Jc) and the irreversibility field (Hirr) in the magnetic field range 0–6 T. The XRD results reveal the presence of MgO and EuB6 secondary phases along with the main hexagonal phase of MgB2. The strain values and the lattice distortions have been found to increase almost linearly with the nominal Eu2O3 content. The observed significant improvement in Jc(H) and Hirr in the Eu2O3-doped MgB2 samples, thus is mainly attributed to the lattice distortions introduced by Eu2O3 doping.  相似文献   

3.
The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D<2.835 and H0>3.8275, H0 is the magnetic field amplitude, the compensation effect does not appear in the system.  相似文献   

4.
The anomalies of magnetic properties of TbLiF4 caused by the interaction of the energy levels of a rare-earth ion in a strong magnetic field up to 50 T directed along the [100] and [110] axes are studied experimentally and theoretically. The jumps in magnetization M(H) and the maxima of the differential magnetic susceptibility dM(H)/dH are found in critical fields H c = 28 and 31 T, where the lower component of the excited doublet approaches the ground-state singlet of a Tb3+ ion. Based on the crystal-field model with known interaction parameters, we calculated the Zeeman effect and the magnetization and magnetic susceptibility curves for the TbLiF4 crystal, which adequately describe magnetic anomalies and critical parameters of a crossover. It is shown that the jumpwise change in the α- and γ-symmetry quadrupole interactions in TbLiF4 caused by changes in the corresponding quadrupole moments during the crossing of energy levels leads, in accordance with experiments, to a decrease in the critical field H c by approximately 4 T and an increase in the maximum of the differential susceptibility dM(H)/dH near the crossover more than twofold. This behavior can be considered as an analog of the induced quadrupole transition caused by a change of the ground state of the rare-earth ion during crossover.  相似文献   

5.
Ferromagnetic Fe-Co-Hf-N nanocomposite films were investigated concerning their microstructure-dependent frequency behaviour. To modify the composition, the films were deposited by reactive RF magnetron sputtering by using three different 6 in. targets with various Hf fractions. The films were post-annealed up to 600 °C in a static magnetic field to induce an in-plane uniaxial anisotropy and to obtain different crystal sizes. Depending on the annealing temperature, high-frequency losses were investigated by considering the full-width at half-maximum (FWHM) Δfeff of the imaginary part of the frequency-dependent permeability which showed a resonance frequency fFMR of 2.3 GHz for an in-plane uniaxial anisotropy field Hu of 4 mT. The FWHM in correlation with the damping parameter αeff is discussed, e.g., in terms of two-magnon scattering. Damping occurs due to film inhomogeneity in magnetisation and uniaxial anisotropy caused by a magnetocrystalline anisotropy Ha and/or non-magnetic phases. This will result in homogenous or even inhomogeneous resonance line broadening if additional and resonance as well as precession frequencies of independent grains arise.  相似文献   

6.
Effect of an in-plane magnetic field on the features of the magnetoresistance of a narrow conducting channel placed in the bath of a macroscopic two-dimensional electron gas has been studied. These features are manifested in the hysteretic behavior of the magnetoresistance in the quantum Hall effect regime. It has been found that the hysteresis loops observed in different ranges of the filling factor may be separated into two groups that differ in both the response to the in-plane magnetic field and the temperature dependence. The basic features observed near the integer filling factors ν = 1 and 2 are almost independent of the in-plane magnetic field. Therefore, their origin is not associated with spin effects. At the same time, additional features that appear at ν ≈ 1.8 and 2.2 are suppressed by the in-plane magnetic field B ≈ 6 T and almost temperature-independent from 45 mK to 1 K.  相似文献   

7.
The hexagonal and cubic phases of Ga1−xCuxV4S8 are obtained by different methods of preparation. The reaction of elements above 900 °C gives hexagonal phases for large range of x=0.02-0.5. These are metallic and show enhanced paramagnetism. The reduction of oxides by H2S at a lower temperature of 700 °C gives non-stoichiomertic compositions of cubic-V4 cluster compound GaV4S8. The solubility of Cu-atoms in cubic phase is less than 10% and above x=0.2 the samples contain a mixture of phases, CuxVS2, GaxVS2 and CuGaS2. The cubic phases are insulating and show Mott's Variable Range Hopping conduction. The non-stoichiomerty and the Cu-substitution reduce the resistivity and thermopower. For x=0.15 and 0.20, the additional peaks are observed in X-ray patterns. These compositions showed a sharp metal to insulator transition on cooling below 180 K. The transitional behaviour is very similar to that previously reported intercalated VS2 compound AlxVS2. The transport and magnetic properties of these phases are discussed in terms of the clustering interactions among V-atoms and the localisation of carriers on the metallic clusters frequently found in V-chalcogenides.  相似文献   

8.
The in-plane and out-of-plane resistivities of both 2H-TaSe2 and 2H-NbSe2 were determined down to 10 K. For both compounds, the resistivity anisotropy shows notably a slope change at temperatures where a CDW transition is expected to occur. On the other hand, for both compounds the resistivity anisotropy at the lowest temperature of measurement is much greater than expected by the Lawrence–Doniach model, which relates the critical magnetic field anisotropy to the normal state resistivity anisotropy for 3D-anisotropic superconductors.  相似文献   

9.
The small angle neutron scattering diffraction patterns from the flux line lattice state in the layered hexagonal superconductor CaAlSi are observed. Under an applied magnetic field (H) parallel to the crystalline c-axis, a hexagonal vortex structure is observed over the entire temperature/field regions. On the other hand, the vortex configuration under Ha shows an ellipsoidal arrangement of the first-order Bragg peaks due to the anisotropic penetration depth. It was inferred from these results that the vortex state characterized by penetration depth and coherence length in CaAlSi may be described by that of anisotropic uniaxial superconductor using London theory.  相似文献   

10.
Measurements of non-local in-plane resistance originating from transverse vortex-vortex correlations have been performed on a Bi2Sr2CaCu2O8+δ high-Tc superconductor in a magnetic field up to 9 T applied along the crystal c-axis. Our results demonstrate that a rigid vortex lattice does exist over a broad portion of the magnetic field-temperature (H-T) phase diagram, well above the first-order transition (FOT) boundary HFOT(T). The results also provide evidence for the vortex lattice melting and vortex liquid decoupling phase transitions, occurring above the HFOT(T).  相似文献   

11.
The results of nonempirical calculation of energies of three polytypes (cubic, two-layer hexagonal, and six-layer hexagonal) are given for RbMnX3 (X = F, Cl, Br) crystals. The calculation is performed using an ionic crystal model with regard for the deformability and the dipole and quadrupole polarizabilities of ions. The behavior of these crystals under the action of hydrostatic pressure is studied. It is demonstrated that, at normal pressure, the RbMnCl3 and RbMnBr3 crystals have a six-layer hexagonal structure. At pressures above 11 kbar, RbMnCl3 passes to a phase with a cubic structure; RbMnBr3 at pressures above 90 kbar passes to a phase with a two-layer hexagonal structure. The RbMnF3 crystal under normal conditions has a cubic structure and experiences no phase transformations under the effect of pressure. The obtained results are in satisfactory agreement with the known experimental data.  相似文献   

12.
We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction ΔL/L. The measured ΔL/L(H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the ΔL/L(H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4–100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.  相似文献   

13.
The electron spin resonance is studied for noncollinear low-dimensional antiferromagnets RbMnBr3 and RbFe(MoO4)2 in a wide range of frequencies and fields. Both compounds have incommensurate spin structures appearing due to a low-symmetry distortion of an ideal hexagonal crystal lattice. Magnetic field applied in the spin plane induces a first-order transition into the commensurate phase. The low-energy resonance branch corresponding to a uniform oscillation of the spin system in the easy plane is observed in the two compounds in both incommensurate and commensurate phases, with a dramatic change of the spectra taking place near the transition field. The resonance spectrum of a nearly commensurate spin structure with long-wave modulations is analyzed in clean and dirty limits in the framework of a hydrodynamic approach. The resonance branch with steep field dependence in the incommensurate state is attributed to the acoustic mode with the gap resulted from pinning of local domain walls (discommensurations) on defects of the crystal structure.  相似文献   

14.
The magnetic hysteresis of Fe57Ni43/Si(100) with magnetic anisotropy induced by an external field has been studied by Brillouin light scattering (BLS). The results are compared with those of the magneto-optic-Kerr-effect (MOKE) measurement and the vibrating sample magnetometer (VSM). The BLS results show that the sample film has strong in-plane anisotropy. The angle between the magnetization and a 4.6 G applied magnetic field H reaches a maximum value of 45° when H lies along the hard axis. The coercivity and magnetic anisotropy field for the film obtained by the BLS are compared with the values obtained by the VSM and MOKE measurement.  相似文献   

15.
In this paper, we present a theoretical investigation on the Faraday effect in paramagnetic neodymium gallium garnet (Nd3Ga5O12) by taking account of the SO and CF interactions, the superexchange interaction and the external magnetic field. It is demonstrated that under high magnetic field, the Faraday rotation (θ) is strongly nonlinear with the external magnetic field (He) while the coefficients of deeply dependent on the frequency of the incident light and temperature, and the Verdet constant V(θ/He) is also a function of He. Furthermore, theoretical calculations show that the reciprocity of the Faraday effect cannot be neglected under high magnetic field. The theoretical results are in good agreement with the experimental data.  相似文献   

16.
The HoMn2 compound crystallizes in the cubic C15 or hexagonal C14 Laves phases depending on preparation. The effect of hydrogen absorption on structural and magnetic properties of HoMn2Hx hydrides for the C14 phase has been investigated by XRD and AC/DC magnetometry in the temperature ranges of 75-380 K and 4-390 K, respectively. In addition to general features revealed by RMn2Hx compounds (R=rare earth or Yttrium), unusual behavior of these hydrides was found. In particular, a transformation from the hexagonal to the monoclinic structure was detected, the same as that observed for cubic HoMn2Hx compounds. The structural transformations are correlated to the magnetic behavior. The presented results are compared mainly with the properties of the cubic HoMn2Hx hydrides as well as with those of other RMn2Hx hydrides. Tentative magnetic and structural phase diagrams are proposed.  相似文献   

17.
In this work we study the ac dissipation of mesoscopic superconductors at microwave frequencies using the time dependent Ginzburg-Landau equations. Our numerical simulations show that the ac dissipation is strongly dependent on the orientation of the ac magnetic field (hac) relative to the dc magnetic field (Hdc). When hac is parallel to Hdc we observe that each vortex penetration event produces a significant suppression of the ac losses because the imaginary part of the ac susceptibility as a function of Hdc increases before the penetration of vortices, and then it decreases abruptly after vortices have entered into the sample. In the second case, when hac is perpendicular to Hdc, we observe that the jumps in dissipation occur at the same values of Hdc but are much smaller than in the parallel configuration. The behavior of the dissipation in the perpendicular configuration is similar to previous results obtained in recent microwave experiments using mesoscopic lithographed squares of Pb [A.D. Hernández, O. Arés, C. Hart, D. Domínguez, H. Pastoriza, A. Butera, J. Low Temp. Phys. 135 (2004) 119].  相似文献   

18.
The CMOS compatible ferromagnetic Fe-Co-(M)-N (M=Ta, Hf) films were investigated with regard to their grain size-dependent frequency behaviour. Predominantly Fe33Co40Ta10N17 films were deposited by reactive r.f. magnetron sputtering. These films were compared to Fe36Co44Hf9N11 films. In order to induce an in-plane uniaxial anisotropy Hu as well as to investigate the grain growth behaviour, the films were annealed in a static magnetic field. The in-plane uniaxial anisotropy field of around 4 mT as well as a good soft magnetic behaviour with a saturation polarisation of approximately 1.2-1.4 T could be observed after heat treatment. Ferromagnetic resonance frequencies (FMR) of approximately up to 2.4 GHz could be achieved according to the Kittel theory. Depending on the heat treatment, high-frequency losses through energy dissipation was made conspicuous by means of the full-width at half-maximum (FWHM) Δfeff of the imaginary part of the frequency-dependent permeability which was between 0.4 and 1 GHz. This FWHM was basically discussed in terms of two-magnon scattering theories, in combination with the Herzer random anisotropy model. In order to correlate the resonance line broadening with a phenomenological damping parameter αeff, which ranged from about 0.0125 to 0.028, the modified Landau-Lifschitz-Gilbert equation was used to fit and describe the permeability spectra of the ferromagnetic films.  相似文献   

19.
The magnetic anisotropy field in thin films with in-plane uniaxial anisotropy can be deduced from the VSM magnetization curves measured in magnetic fields of constant magnitudes. This offers a new possibility of applying rotational magnetization curves to determine the first- and second-order anisotropy constant in these films. In this paper we report a theoretical derivation of rotational magnetization curve in hexagonal crystal system with easy-plane anisotropy based on the principle of the minimum total energy. This model is applied to calculate and analyze the rotational magnetization process for magnetic spherical particles with hexagonal easy-plane anisotropy when rotating the external magnetic field in the basal plane. The theoretical calculations are consistent with Monte Carlo simulation results. It is found that to well reproduce experimental curves, the effect of coercive force on the magnetization reversal process should be fully considered when the intensity of the external field is much weaker than that of the anisotropy field. Our research proves that the rotational magnetization curve from VSM measurement provides an effective access to analyze the in-plane anisotropy constant K 3 in hexagonal compounds, and the suitable experimental condition to measure K 3 is met when the ratio of the magnitude of the external field to that of the anisotropy field is around 0.2. Supported by the National Natural Science Foundation of China (Grant Nos. 90505007 and 10774061) Recommended by LI FaShen  相似文献   

20.
This paper reports the observation of hexagonal phase of barium titanate by Mn doping and its effect on dielectric and magnetic properties. Ceramic samples of Ba0.98Zn0.02Ti1−xMnxO3 (where, x= 0.04, 0.06 and 0.08) were prepared by traditional solid-state reaction route. The hexagonal phase is stabilized in the composition Ba0.98Zn0.02Ti0.92Mn0.08O3 and a very feeble MH loop is also observed in that composition. This induced magnetism is expected due to the exchange interactions between magnetic polarons formed by oxygen vacancies with Mn ions. The dielectric constant as well as the ferroelectric to paraelectric transition temperature is systematically decreased with increasing of Mn doping concentration. Further to that, the temperature dependent dielectric constant curve is also broadened at transition temperature with increasing of Mn concentration. However, the ferroelectric to paraelectric transition temperature is well above room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号