首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earths gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.  相似文献   

2.
Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.  相似文献   

3.
In this work, we highlight the influence of the particle–particle interaction on the retention behavior in asymmetric flow field-flow fractionation (A4F) and the misunderstanding considering the size determination by a light-scattering detector (static and dynamic light scattering) by comparing fullerene nanoparticles to similar sized polystyrene nanoparticle standards. The phenomena described here suggest that there are biases in the hydrodynamic size and diffusion determination induced by particle–particle interactions, as characterized by their virial coefficient. The dual objectives of this paper are to (1) demonstrate the uncertainties resulting from the current practice of size determination by detectors coupled to an A4F system and (2) initiate a discussion of the effects of particle–particle interactions using fullerene nanoparticles on their characterization as well as their origins. The results presented here clearly illustrate that the simple diffusion coefficient equation that is generally used to calculate the hydrodynamic size of nanoparticles (NPs) cannot be considered for whole fractograms according to their size distribution. We tried to identify particle interactions that appear during fractionation and demonstrated using the fully developed diffusion coefficient equation. We postulate that the observed interaction-dependent retention behavior may be attributed to differences in the virial coefficient between NPs and between NPs and the accumulation wall (membrane surface) without quantifying it. We hope that our results will stimulate discussion and a reassessment of the size determination procedure by A4F-LS to more fully account for all the influential material parameters that are relevant to the fractionation of nanoscale particles by A4F.  相似文献   

4.
Summary Gravitational field-flow fractionation (GFFF) is the simplest and cheapest of field-flow fractionation (FFF) techniques, although it is still at an early development stage. The application of GFFF to the determination of particle size distribution (PSD) of silica particles used as chromatographic supports is described. The accuracy of the method is evaluated by comparing PSDs obtained by GFFF with those obtained by laser diffraction, a non-separative technique widely applied to particle characterization. It is ultimately demonstrated that a low-cost GFFF channel can simply replace the column of a standard HPLC system, allowing laboratories that are not specialized in size analysis to perform accurate PSD studies with standard HPLC expertise.  相似文献   

5.
Performance of gravitational field-flow fractionation (GFFF) is improved here with respect to the ability to fractionate and distinguish different varieties of wine-making yeast from Saccharomyces cerevisiae. A new GFFF channel with non-polar walls has been employed to enhance fractionation selectivity and reproducibility. Since GFFF retention depends from first principles on particle size, Coulter counter measurements were performed in order to compare size distribution profiles with GFFF profiles. From such a comparison, GFFF was shown to be able to reveal differences in yeast cells other than size. This could make use of GFFF for screening different varieties of wine-making yeast towards future quality assessment procedures based on a possible correlation between yeast cell morphology indexes and quality indexes.  相似文献   

6.
Nanoparticles are not typically ready-to-use for in vitro cell culture assays. Prior to their use in assays, powder samples containing nanoparticles must be dispersed, de-agglomerated, fractionated by size, and characterized with respect to size and size distribution. For this purpose we report exemplarily on polyphosphate-stabilized iron oxide nanoparticles in aqueous suspension. Fractionation and online particle size analysis was performed in a time-saving procedure lasting 50 min by combining asymmetrical flow field-flow fractionation (A4F) and small-angle X-ray scattering (SAXS). Narrowly distributed nanoparticle fractions with radii of gyration (R(g)) from 7 to 21 nm were obtained from polydisperse samples. The A4F-SAXS combination is introduced for the preparation of well-characterized sample fractions originating from a highly polydisperse system as typically found in engineered nanoparticles. A4F-SAXS processed particles are ready-to-use for toxicological studies. The results of preliminary tests of the effects of fractionated iron oxide nanoparticles with a R(g) of 15 nm on a human colon model cell line are reported.  相似文献   

7.
Flow field-flow fractionation (FlFFF) was used for size characterization of gold nanoparticles. The measured particle sizes obtained from FlFFF for the commercial 10 nm gold nanoparticle standard and the gold nanoparticles synthesized in the laboratory were in good agreement with those measured by transmission electron microscopy (TEM). Further, the capability of α-tocopherol to induce enlargement of gold nanoparticles by catalysis of the reduction of AuCl4 by citrate was observed by monitoring the changes in particle size of gold nanoparticles using FlFFF. The effects of α-tocopherol and incubation time on enlargement of the gold nanoparticles were examined. Higher concentrations of α-tocopherol resulted in larger nanoparticles. At fixed α-tocopherol concentration, larger nanoparticles were formed at longer incubation times.  相似文献   

8.
Gravitational field-flow fractionation (GrFFF) is applied to the fractionation of active dry wine yeast. An experimental approach to the analysis of the effects that field variation by changing mobile phase composition and flow-rate have on the fractionation process of standard particles (polystyrene) was first developed to further obtain effective fractionation of wine yeast by GrFFF. Scanning electron microscopy and Coulter counter particle size measurements were used to monitor the fractionation extent and capabilities of GrFFF to describe the distribution of yeast cells populations.  相似文献   

9.
Gold nanoparticles (GNPs) have been synthesized through the citrate reduction method; the citrate/gold(III) ratio was changed from 1:1 up to 10:1 and the size of the resulting nanoparticles was measured by sedimentation field-flow fractionation (SdFFF). Experimental data showed that the GNPs size decreases in the ratio range 1:1–3:1 and then increases from 5:1 to 10:1 passing through a plateau region in between, and is almost independent of the precursor solution concentrations. In the zone of minimum diameters the synthetic process does not produce monodispersed GNPs but often multiple distributions, very close in size, are observed as evidenced by the particle size distributions (PSDs) derived from the SdFFF fractograms. UV–vis spectrophotometry, being the most common technique employed in the optical characterization of nanoparticles suspensions, was used throughout this work. A confirmation of the nucleation–aggregation–fragmentation mechanism was inferred from the cross-correlation between UV–vis and SdFFF results.  相似文献   

10.
 A method for characterizing the particle size and size distribution of multi-sized polymer lattices was developed by combining quasielastic light scattering (QELS) with a centrifuge. Lattices were first fractionated by centrifugation and the different populations of particles were separated in successive steps. The size of these particles was measured by QELS, and the mass fraction of the particles was determined gravimetrically. The particle size and size distribution of several blends of monodisperse lattices and two industrial multi-sized lattices have been measured by this method. The results show that the particle sizes obtained using this method are in good agreement with the expected particle diameters, and that the relative amounts of the different groups of particles in the blends can be accurately determined. The efficiency of centrifuge-QELS was also confirmed by comparison with other techniques such as transmission electron microscopy (TEM), QELS, field-flow fractionation (FFF) and capillary hydrodynamic fractionation (CHDF). However, this method is not suited for the analysis of continuous, broad distributions or mixtures with a high number of different populations. It is better suited for distributions with a small number of families of particles, and then can be used for preparative propose on a laboratory scale. Received: 9 October 1996 Accepted: 7 July 1997  相似文献   

11.
The theoretical calculations confirmed that the gravitational force cannot be neglected in all field-flow fractionation techniques separating nanometer-sized colloidal particles whenever particle diameter is approximately 200?nm and larger. Particle–particle repulsive interactions, mostly electrostatic repulsions, influence substantially concentration distribution established by any effective field acting across the fractionation channel, as confirmed explicitly for thermophoretic force generated by temperature gradient in microthermal field-flow fractionation. The ionic strength of the carrier liquid causes the screening of the electrostatic double layer around the dispersed particles and thus influences the retention. The attractive particle–particle forces occur when the zeta potential of the particles approaches to 0?mV, the electrostatic repulsions are screened, and the aggregation of the particles is observed. The pH influences differently the size and zeta potential of the plain polystyrene latex particles and of the particles modified on the surface by the groups –COOH and –NH2. The role of a detergent in carrier liquid is non-negligible, as demonstrated by its presence or absence in carrier liquid.  相似文献   

12.
The combined employment of the SPLITT (split-flow thin) cell--a relatively new system for fast, continuous binary separation--and of gravitational field-flow fractionation (GrFFF)--a fractionation technique suitable for micron particle size distribution determination--was investigated for starch separation and characterization. Emphasis is placed on the main advantages of both techniques: operating under gentle earth gravity field, low cost and ease of maintenance. The reproducibility of GrFFF is demonstrated. Both the SPLITT separation and GrFFF fractionation results were checked by optical microscopy. Application examples of typical starch fractionation experiments are reported and discussed.  相似文献   

13.
<正> 除制备色谱外,一般色谱和场流分级的进样量都是很小的,而溶质层在经过色谱柱或场流分级柱槽后由于分离以及加宽效应浓度又要大大降低,因此,所得级分中溶质的含量极少。如需把所得级分做再进样,则必须在同一条件下重复收集同一集分,经浓缩后再进  相似文献   

14.
This work represents a first systematic approach to the size-based elemental quantification and size estimation of metal(loid) oxide nanoparticles such as silica (SiO2) in a real food matrix using asymmetric flow field-flow fractionation coupled online with inductively coupled plasma mass spectrometry (ICP-MS) and multi-angle light scattering (MALS) and offline with transmission electron microscopy (TEM) with energy-dispersive X-ray analysis (EDAX). Coffee creamer was selected as the model sample since it is known to contain silica as well as metal oxides such as titania at the milligramme per kilogramme levels. Optimisation of sample preparation conditions such as matrix-to-solvent ratio, defatting with organic solvents and sonication time that may affect nanoparticle size and size distribution in suspensions was investigated. Special attention was paid to the selection of conditions that minimise particle transformation during sample preparation and analysis. The coffee creamer matrix components were found to stabilise food grade SiO2 particles in comparison with water suspensions whilst no significant effect of defatting using hexane was found. The use of sample preparation procedures that mimic food cooking in real life was also investigated regarding their effect on particle size and particle size distribution of silica nanoparticles in the investigated food matrix; no significant effect of the water temperature ranging from ambient temperature to 60 °C was observed. Field-flow fractionation coupled to inductively coupled plasma-mass spectrometry (FFF-ICP-MS) analysis of extracts of both unspiked coffee creamer and coffee creamer spiked with food grade silicon dioxide, using different approaches for size estimation, enabled determination of SiO2 size-based speciation. Element-specific detection by ICP-MS and post-FFF calibration with elemental calibration standards was used to determine the elemental composition of size fractions separated online by FFF. Quantitative data on mass balance is provided for the size-based speciation of the investigated inorganic nano-objects in the complex matrix. The combination of FFF with offline fractionation by filtration and with detection by ICP-MS and TEM/EDAX has been proven essential to provide reliable information of nanoparticle size in the complex food matrix.
Figure
Characterisation of silica nanoparticles in a coffee creamer matrix using FFF-based methodology  相似文献   

15.
Asymmetrical flow field-flow fractionation (AsFlFFF) was used to determine the size distribution of drug-loaded core/shell nanoparticles which have a lipid core of lecithin and a polymeric shell of a Pluronic. AsFlFFF provided separation of the drug-loaded core/shell nanoparticles from smaller coreless polymeric micelles, thus allowing accurate size analysis of the drug-loaded nanoparticles without interference by the coreless micelles. It was found from AsFlFFF that the drug-loaded nanoparticles have broad size distributions ranging from 100 to 600 nm in diameter. It was also found that, after the nanoparticles had been stored for 70 days, they disappeared as a result of self-degradation. Being a separation technique, AsFlFFF seems to be more useful than transmission electron microscopy or dynamic light scattering for size analysis of core/shell nanoparticles, which have broad and bimodal size distributions. Figure Separation by AsFlFFF  相似文献   

16.
Sedimentation field-flow fractionation (SdFFF) can be used to prepare fractions of very narrow mass range for electron microscopic (EM) analysis. Assuming the particle density is the same for all particles within that fraction the equivalent spherical diameter for the particles can be calculated from SdFFF theory. Integration of the micrograph image of each particle yields an area measurement which, when used in conjunction with the equivalent spherical particle diameter (from SdFFF), provides information about the particle thickness and aspect ratio. Thus SdFFF-SEM can be used to provide detailed information about clay morphology across the particle size distribution of the sample. Three clay minerals have been studied using the methodologies outlined in this paper. The aspect ratio for the Purvis School Mine kaolinite ranged from 2.8–5.9, for RM30 illite from 11.3–24.3, and for Muloorina illite from 3.1–4.3.  相似文献   

17.
Poly(ethyleneoxide-b-?-caprolactone) (PEO-b-PCL) self-assemblies in water were characterized by asymmetrical flow field-flow fractionation (AsFlFFF), with on-line coupling with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), refractive index and UV/Vis detection. We report here the AsFlFFF analysis of three different nanoparticular self-assembled systems of PEO-PCL polymers in aqueous media, each polymer differing by the mass of the PEO and PCL fragments. Thus, self-assembled water samples of {PEO(2000)-b-PCL(2600)}, {PEO(5000)-b-PCL(1400)} and {PEO(5000)-b-PCL(4000)} were analyzed by AsFlFFF. In most cases, the size obtained by AsFlFFF was similar to the one characterized by DLS. However, in some instances, only AsFlFFF revealed the presence of several self-assemblies with very different sizes. These nanoparticles being used for the targeted delivery of photosensitizers in photodynamic therapy, it was important to fully characterize the samples in terms of size and size distribution, molecular weight, Ip, aggregation number and also to assess whether the photosensitizer was inside the nanoparticles. AsFlFFF proved to be a very efficient technique which enabled this study without any destruction of the nanoparticles.  相似文献   

18.
A prominent sector of nanotechnology is occupied by a class of carbon-based nanoparticles known as fullerenes. Fullerene particle size and shape impact in how easily these particles are transported into and throughout the environment and living tissues. Currently, there is a lack of adequate methodology for their size and shape characterisation, identification and quantitative detection in environmental and biological samples. The most commonly used methods for their size measurements (aggregation, size distribution, shape, etc.), the effect of sampling and sample treatment on these characteristics and the analytical methods proposed for their determination in complex matrices are discussed in this review. For the characterisation and analysis of fullerenes in real samples, different analytical techniques including microscopy, spectroscopy, flow field-flow fractionation, electrophoresis, light scattering, liquid chromatography and mass spectrometry have been reported. The existing limitations and knowledge gaps in the use of these techniques are discussed and the necessity to hyphenate complementary ones for the accurate characterisation, identification and quantitation of these nanoparticles is highlighted.  相似文献   

19.
In this report we demonstrate a green chemical approach for the synthesis of stable silver nanoparticles in aqueous medium using tyrosine as an efficient photoreducing agent. A narrow size distribution of silver nanoparticles can be achieved by this simple photoirradiation method without using any additional stabilizing agents or surfactants. Two different irradiation sources have been explored resulting in a different particle size distribution pattern in each case. Further, we show that starting from a polydisperse tyrosine synthesized silver nanoparticles sample, it is also possible to fractionate them into different size ranges. The size fractionation was achieved by a 2 stage phase transfer method employing different organic solvents. The nanoparticles synthesized were characterized using UV-vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques.  相似文献   

20.
Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号