首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A surface‐enhanced Raman scattering (SERS) active substrate for the detection of polycyclic aromatic hydrocarbons (PAHs) was developed, which used 25, 27‐dimercaptoacetic acid‐26, 28‐dihydroxy‐4‐terbutyl calix[4]arene (DMCX) to functionalize a gold colloid film. This SERS‐active substrate prepared by self‐assembly method exhibits a high sensitivity, especially for the detection of PAHs. With the use of this SERS‐active substrate and with the application of the shifted excitation Raman difference spectroscopy (SERDS) technique, Raman signals of pyrene and anthracene in aqueous solutions at low concentration level (500 pM) can be obtained. Moreover, because PAHs are blocked from being directly adsorbed on gold colloid by DMCX and the photochemical reactions of adsorbates are avoided, the Raman bands of PAHs adsorbed on DMCX‐fuctionalized gold colloid film can be one‐to‐one correspondence with those of solid PAHs, and additionally, this SERS‐active substrate can be easily cleaned and reused. The obtained results demonstrate that the DMCX‐functionalized gold colloid films prepared by self‐assembly method have great potential to be developed to an in situ PAHs detection substrate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
We re-examine the theory of Raman scattering in cubic crystals. The unconventional vector potential of vortex light leads to new selection rules. We show that in this novel optical process, (a) silent phonon modes become active and (b) scattering tensors change for ordinary Raman active phonon modes. Calculation based on a simplified model shows that the vortex Raman scattering intensity can be comparable with that of ordinary Raman process.  相似文献   

3.
4.
Although the Raman effect was discovered nearly 80 years ago, it is only recently that the special characteristics of Raman scattering for one-dimensional systems have been seriously considered. This review focuses on the special interest of the Raman effect for one-dimensional systems that is of particular relevance to carbon nanostructures. Two examples of Raman scattering in one-dimensional systems are given. The first illustrates the use of Raman spectroscopy to reveal the remarkable structure and properties of carbon nanotubes arising from their one-dimensionality. Some of the recent advances in using Raman spectroscopy to study doping and intercalation to modify nanotube properties are reviewed, in the context of a one-dimensional system. The second example is the Raman spectra of a linear chain of carbon atoms and the special properties of this interesting system. New approaches toward applying Raman spectroscopy to carbon nanostructures are also emphasized.  相似文献   

5.
The effect of pressure on the Raman modes in TeO2 (paratellurite) has been investigated to 30GPa, using the diamond cell and argon as pressure medium. The pressure dependence of the Raman modes indicates four pressure-induced phase transitions near 1 GPa, 4.5 GPa, 11 GPa and 22 GPa. Of these the first is the well studied second-order transition fromD 4 4 symmetry toD 2 4 symmetry, driven by a soft acoustic shear mode instability. The remarkable similarity in the Raman spectra of phases I to IV suggest that only subtle changes in the structure are involved in these phase transitions. The totally different Raman spectral features of phase V indicate major structural changes at the 22GPa transition. It is suggested that this high pressure-phase is similar to PbCl2-type, from high pressure crystal chemical considerations. The need for a high pressure X-ray diffraction study on TeO2 is emphasized, to unravel the structure of the various high pressure phases in the system.  相似文献   

6.
We reported two pressure-induced phase transitions of goethite up to ~35?GPa using a diamond anvil cell in conjunction with ac impendence spectroscopy, Raman spectra at room temperature. The first pressure-induced phase transition at ~7.0?GPa is manifested in noticeable changes in six Raman-active modes, two obvious splitting phenomena for the modes and the variations in the slope of conductivity. The second phase transition at ~20?GPa was characterized by an obviously drop in electrical conductivity and the noticeable changes in the Raman-active modes. The variations in activation energy with increasing pressure were also discussed to reveal the electrical properties of goethite at high pressure.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous atmospheric pollutants and food contaminants, which exhibit potent carcinogenicity, mutagenicity, and teratogenicity. Vibrational spectroscopy techniques, especially Raman spectroscopy and surface‐enhanced Raman spectroscopy (SERS), can be potentially used as an alternative technique to liquid and gas chromatography in PAH analysis. However, there is limited information on the intrinsic Raman and SERS fingerprints of PAHs. In this study, we have acquired the Raman and SERS spectra of seven PAH compounds and compared their experimental spectra with theoretical Raman spectra calculated by density function theory (DFT). The vibrational modes corresponding to the Raman peaks have also been assigned using DFT. Characteristic Raman and SERS peaks have been identified for five PAH compounds, and the limits of detection were estimated. Such information could be useful for developing SERS assays for simple and rapid PAH identification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Raman spectra of Rb2KTiOF5 crystal were obtained and analyzed in the temperature range from 77 to 297 K and under hydrostatic pressure up to 4.2 GPa (at T = 295 K). The experimental results were compared with quantum‐chemical simulation of TiOF5 pseudo‐octahedron. To interpret effects of lattice ordering, phonon spectra of several ordered phases of Rb2KTiOF5 were calculated within ab initio generalized Gordon–Kim model, and ordering of TiOF5 molecular groups were simulated within Monte Carlo approach. The spectra exhibited orientation disordering in the cubic phase under ambient conditions. Cooling below the phase transition temperature (215 K) leads to partial ordering of the structure. The isotropic perovskite‐like phase was found to undergo first‐order transition into a low‐symmetry anisotropic phase at about 1 GPa. Further compression up to 4.1 GPa did not show any effects associated with phase transitions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Hong Zeng 《中国物理 B》2022,31(5):56109-056109
The layered van der Waals antiferromagnetic FePS3 has received considerable attention because long range magnetic ordering can remain with single atoms layer, which offers potential applications in future ultrathin devices. Here, we perform Raman spectroscopy to systematically explore the variations of lattice vibration and crystal structure under pressure up to 18.9 GPa. We observe two structural phase transitions at approximately 4 GPa and 13 GPa, respectively. Moreover, by monitoring spin-related Raman modes, we demonstrate a pressure-induced magnetic structure transition above 2 GPa. These modes disappear accompanying the second structural phase transition and insulator-to-metal transition (IMT), indicating the suppression of long-range magnetic ordering, in agreement with earlier neutron powder diffraction experiments.  相似文献   

10.
激光镊子拉曼光谱技术可以实现在自然状态下对单个细胞或细胞器较长时间的观察研究.应用激光镊子拉曼光谱技术实时观察南极微生物低温降解芳香烃过程中单个南极细菌的细胞生长和胞内生物大分子的动态变化过程,收集、分析其拉曼光谱,结果发现:单细胞的拉曼光谱反映了其细胞内部的生命物质组成,南极动球菌 NJ41 和希瓦氏菌 NJ49 生...  相似文献   

11.
This review discusses the size effects on Raman scattering from microcrystals. For ionic microcrystals, the existence of surface phonon modes is predicted from electromagnetic theories. It is shown that Raman spectroscopy is very effective to detect the surface phonon modes. The size effects on nonpolar phonons in covalent microcrystals can also be studied by Raman spectroscopy. However, the relaxation of the wave-vector selection rule or the phonon confinement explains only some of the experimental data. Development of lattice dynamical theories of Raman scattering from microcrystals including surface effects is highly required. Enhancement of Raman intensities arising from the excitation of electromagnetic normal modes of microcrystals is also discussed.  相似文献   

12.
13.
The paper reports on a routine to extract the composition of multi‐component mixtures from their Raman spectra at elevated pressures. The strategy is based on fitting weighted Raman spectra of the pure compounds to the measured Raman spectrum of the mixture, also considering the effects of intermolecular interactions onto the Raman spectra by applying Gaussian and Voigt profile deconvolution of the Raman peaks. Thereby, an improved accuracy compared to previous evaluation strategies could be obtained. The more accurate data of the ternary mixtures of carbon dioxide, water and organic solvents are presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
测量了0—15 GPa压强下联苯分子的拉曼光谱. 结果表明,随压强增加,分子内和分子间π-π共轭和离域效应增强,谱线的绝对强度变大、蓝移. 联苯分子的两费米共振谱线强度比Rf/a减少,频率差Δ增加,当压强为8 GPa时,费米共振现象消失,利用Betran理论得出了固有频率差Δ0和耦合系数ω随压强的变化关系,通过高压下相变进行了解释,并探讨了高压下费米共振耦合变弱的机理. 关键词: 联苯 费米共振 高压 拉曼光谱  相似文献   

15.
Raman spectroscopic investigation on weak scatterers such as metals is a challenging scientific problem. Technologically important actinide metals such as uranium and plutonium have not been investigated using Raman spectroscopy possibly due to poor signal intensities. We report the first Raman spectrum of uranium metal using a surface‐enhanced Raman scattering‐like geometry where a thin gold overlayer is deposited on uranium. Raman spectra are detected from the pits and scratches on the sample and not from the smooth polished surface. The 514.5‐ and 785‐nm laser excitations resulted in the Raman spectra of uranium metal whereas 325‐nm excitation did not give rise to such spectra. Temperature dependence of the B3g mode at 126 cm−1 is also investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
We report for the first time the tip‐enhancement of resonance Raman scattering using deep ultraviolet (DUV) excitation wavelength. The tip‐enhancement was successfully demonstrated with an aluminum‐coated silicon tip that acts as a plasmonic material in DUV wavelengths. Both the crystal violet and adenine molecules, which were used as test samples, show electronic resonance at the 266‐nm excitation used in the experiments. With results demonstrated here, molecular analysis and imaging with nanoscale spatial resolution in DUV resonance Raman spectroscopy can be realized using the tip‐enhancement effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Theoretical calculations predict that the collapse pressure for double-walled carbon nanotubes (DWCNTs) is proportional to 1/R 3, where R is the effective or average radius of a DWCNT. In order to address the problem of CNT stability at high pressure and stress, we performed a resonance Raman study of DWCNTs dispersed in sodium cholate using 532 and 633 nm laser excitation. Raman spectra of the recovered samples show minor versus irreversible changes with increasing I D/I G ratio after exposure to high non-hydrostatic pressure of 23 and 35 GPa, respectively. The system exhibits nearly 70% pressure hysteresis in radial breathing vibrational mode signals recovery on pressure release which is twice that predicted by theory.  相似文献   

18.
The phase transformation in nano‐crystalline dysprosium sesquioxide (Dy2O3) under high pressures is investigated using in situ Raman spectroscopy. The material at ambient was found to be cubic in structure using X‐ray diffraction (XRD) and Raman spectroscopy, while atomic force microscope (AFM) showed the nano‐crystalline nature of the material which was further confirmed using XRD. Under ambient conditions the Raman spectrum showed a predominant cubic phase peak at 374 cm−1, identified as Fg mode. With increase in the applied pressure this band steadily shifts to higher wavenumbers. However, around a pressure of about 14.6 GPa, another broad band is seen to be developing around 530 cm−1 which splits into two distinct peaks as the pressure is further increased. In addition, the cubic phase peak also starts losing intensity significantly, and above a pressure of 17.81 GPa this peak almost completely disappears and is replaced by two strong peaks at about 517 and 553 cm−1. These peaks have been identified as occurring due to the development of hexagonal phase at the expense of cubic phase. Further increase in pressure up to about 25.5 GPa does not lead to any new peaks apart from slight shifting of the hexagonal phase peaks to higher wavenumbers. With release of the applied pressure, these peaks shift to lower wavenumbers and lose their doublet nature. However, the starting cubic phase is not recovered at total release but rather ends up in monoclinic structure. The factors contributing to this anomalous phase evolution would be discussed in detail. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
20.
First and second‐order Raman spectra of B6O and their dependence on the wavelength of the excitation line from IR (infrared) to deep UV (ultraviolet) has been studied. The first‐order Raman spectra contain 11 well‐resolved lines of the 12 expected modes 5 A1g + 7 Eg (space group R‐3m, point group D3d). The second‐order Raman spectra contains eight lines that are resolved only in the case of the 244‐nm excitation line. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号