首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.  相似文献   

2.
The inactivation of Saccharomyces cerevisiae NCFB 3191 using high hydrostatic pressure of 300 MPa at 20°C with a holding time of 0, 1, 5 and 10 min was investigated with model suspensions in phosphate-buffered saline and in beetroot juice. The reduction in S. cerevisiae NCFB 3191 in model suspensions was about 5 log after 10 min of pressurization, irrespective of the initial level of cell concentration in the samples (5.4–8.7 log cfu/mL). The baroprotective effect of beetroot juice on yeast cells during pressurization was observed; the reduction was lower and was only 3.5 log (the inoculum was 5.4 log cfu/mL). No sublethal injury among the surviving cells of the studied yeast strain was found.  相似文献   

3.
ABSTRACT

High hydrostatic pressure (HHP) can be an alternative method to steaming to inhibit enzymatic fermentation in green tea making process. However, the effect of HHP treatment on green tea taste is not clear. Thus, this study aimed to determine the effect of HHP on substances associated with green tea taste. Fresh green tea leaves were immediately treated with HHP at 300, 500, or 700?MPa for 10, 30, or 60 min at 25°C. The concentration of free amino acids, catechins, and caffeine in HHP-treated samples was quantified by LC-MS. The taste intensity of the samples was detected by taste sensors. HHP resulted in a high accumulation of free amino acids in green tea leaves, which was likely due to proteolysis. In particular, theanine synthesis may have been promoted by an increase in the concentration of substrates during HHP. Compared to steaming, HHP enhanced umami richness, and inhibited bitterness and astringency.  相似文献   

4.
静水高压处理对水稻植株生理特性的影响   总被引:21,自引:0,他引:21       下载免费PDF全文
 以75 MPa静水高压处理萌动的水稻种子12 h,成苗后移栽至大田,研究高压处理后植株剑叶光合特性的变化。结果显示,静水高压处理后,粤香占和粤丰占种子的发芽率分别降低了14.4% 和16.6%,成苗率分别降至对照的24.6%和21.9%,生长明显受抑制,幼苗的株高在35天左右才能追赶上对照。高压处理的粤香占剑叶在生育过程中的净光合速率(Pn)和表观量子效率(AQY)的总平均值分别比未处理的对照增加了9.2%和12.4%,而粤丰占则分别增加5.7%和17.4%。高压处理后两个品种的植株叶片不同生长时期的平均光合色素含量均高于未处理的对照,在生长后期的衰老过程中高压处理植株剑叶的色素含量和PSⅡ光化学效率Fv/Fm下降速率较各自的未处理对照缓慢。高压处理后两个水稻品种的生物量和单株产量分别比对照提高了8%~27%及7%~14%。提出高压处理可能作为一种新的选育品种的方法。  相似文献   

5.
Abstract

Effect of hydrostatic pressure up to 250 MPa on structurization kinetics and morphology of network polymers based on epoxy oligomers has been studied using the methods of measurements of volume resistivity and optical microscopy.  相似文献   

6.
Herein, 1 wt% quinoa protein isolate (QPI) was exposed to sonication using a 20 kHz ultrasonicator equipped with a 6 mm horn (14.4 W, 10 mL, up to 15 min) or high hydrostatic pressure (HHP, up to 600 MPa, 15 min) treatments at pH 5, pH 7, and pH 9. The changes to physicochemical properties were probed by SDS-PAGE, FTIR, free sulfhydryl group (SH), surface hydrophobicity (H0), particle size and solubility. As revealed by SDS-PAGE, substantial amounts of 11S globulin participated in the formations of aggregates via SS bond under HHP, particularly at pH 7 and pH 9. However, protein profiles of QPI were not significantly affected by the sonication. Free SH groups and surface hydrophobicity were increased after the sonication treatment indicating protein unfolding and exposure of the embedded SH and/or hydrophobic groups. An opposite trend was observed in HHP treated samples, implying aggregation and reassociation of structures under HHP. HHP and sonication treatments induced a decrease in ordered secondary structures (random coil and β-turn) accompanied with an increase in disordered secondary structures (α-helix and β-sheet) as probed by FTIR. Finally, the sonication treatment induced a significant improvement in the solubility (up to ∼3 folds at pH 7 and ∼2.6 folds at pH 9) and a reduction in particle sizes (up to ∼3 folds at pH 7 and ∼4.4 folds at pH 9). However, HHP treatment (600 MPa) only slightly increased the solubility (∼1.6 folds at pH 7 and ∼1.2 folds at pH 9) and decreased the particle size (∼1.3 folds at pH 7 and ∼1.2 folds at pH 9). This study provides a direct comparison of the impacts of sonication and HHP treatment on QPI, which will enable to choose the appropriate processing methods to achieve tailored properties of QPI.  相似文献   

7.
In this study, secondary structures of sweet potato protein (SPP) after high hydrostatic pressure (HHP) treatment (200–600?MPa) were evaluated and emulsifying properties of emulsions with HHP-treated SPP solutions in different pH values (3, 6, and 9) were investigated. Circular dichroism analysis confirmed the modification of the SPP secondary structure. Surface hydrophobicity increased at pH 3 and decreased at 6 and 9. Emulsifying activity index at pH 6 increased with an increase in pressure, whereas emulsifying stability index increased at pH 6 and 9. Oil droplet sizes decreased, while volume frequency distribution of the smaller droplets increased at pH 3 and 6 with the HHP treatment. Emulsion viscosity increased at pH 6 and 9 and pseudo-plastic flow behaviors were not altered for all emulsions produced with HHP-treated SPP. These results suggested that HHP could modify the SPP structure for better emulsifying properties, which could increase the use of SPP emulsion in the food industry.  相似文献   

8.
Abstract

The galvanomagnetic properties of electron-irradiated n- and p-InSb under high hydrostatic pressure have been investigated. It has been shown that electron irradiation generates a series of deep levels split from the valence band.  相似文献   

9.
We investigated the influence of high hydrostatic pressure (HHP) treatment on the estrogenic properties and conversion of the phenolic compounds in germinated black soybean. The black soybean was germinated for two- or four-days, and then subjected to HHP at 0.1, 50, 100, or 150?MPa for 12 or 24?h. The highest total polyphenol content (3.9?mg GAE/g), flavonoid content (0.8?mg?CE/g), phenolic acid content (940?±?18.96?μg/g), and isoflavonone content (2600?μg/g) were observed after germination for four days and HHP treatment at 100?MPa for 24?h. In terms of isoflavone composition, the malonyl, acetyl and β-glycoside contents decreased, while the aglycone content increased with HHP. The highest proliferative effect (150%) is observed at four days germination and HHP treatment at 100?MPa. These results suggest that application of HHP may provide useful information regarding the utility of black soybean as alternative hormone replacement therapy.  相似文献   

10.
Two-dimensional van der Waals magnetic materials are intriguing for applications in the future spintronics devices, so it is crucial to explore strategy to control the magnetic properties. Here, we carried out first-principles calculations and Monte Carlo simulations to investigate the effect of biaxial strain and hydrostatic pressure on the magnetic properties of the bilayer CrI3. We found that the magnetic anisotropy, intralayer and interlayer exchange interactions, and Curie temperature can be tuned by biaxial strain and hydrostatic pressure. Large compressive biaxial strain may induce a ferromagneticto-antiferromagnetic transition of both CrI3 layers. The hydrostatic pressure could enhance the intralayer exchange interaction significantly and hence largely boost the Curie temperature. The effect of the biaxial strain and hydrostatic pressure revealed in the bilayer CrI3 may be generalized to other two-dimensional magnetic materials.  相似文献   

11.
Abstract

Effect of hydrostatic pressure up to 250 MPa on structurization kinetics and morphology of network polymers based on epoxy oligomers has been studied using the methods of measurements of resistivity and optical microscopy.  相似文献   

12.
The aim of this study was to investigate the effect of high hydrostatic pressure (HHP) treatment (200, 300, 400?MPa; 5°C, 15°C and 25°C; 5 and 10 min) on some quality properties of pomegranate juice. Juice samples are obtained under industrial conditions at two different squeezing pressure levels (100 and 150?psi – 0.689 and 1.033?MPa, respectively). Results are compared against conventional thermal treatment (85°C/10 min) and raw sample. For all three processing temperature, HHP combinations at 400?MPa for 10 min were sufficient to decrease the microbial load around 4.0 log cycles for both squeeze levels. All HHP treatments showed no significant decrease at antioxidant activity, total phenolic content and monomeric anthocyanin pigment concentrations, while there was a significant decrease (p?≤?.05) in thermal-treated samples. Being the highest sugar alcohol in pomegranate juice, mannitol content must be considered for determining the authenticity, and mannitol content increased with squeezing pressure and thermal treatment.  相似文献   

13.
ABSTRACT

With the increasing demand for fresher, higher quality, minimally processed and safer food, there is a strong necessity to develop non-thermal processing techniques. Also for hummus, which is popular all around the world. In this work, the effect of refrigerated storage on the survival of pathogens in hummus treated by high hydrostatic pressure (HHP) (500?MPa/10?min/room temperature) was evaluated. The cocktail of two Salmonella, four Listeria monocytogenes and two Escherichia coli strains was used in this study. All pathogen types were able to survive in hummus during 60 days of refrigerated storage. HHP-treated samples plated on day 0 successfully achieved a?>?5 log cfu/g reduction for all pathogen types. No residual survivors were present after 30 and 60 days in any of the HHP-treated samples. These results demonstrate that HHP may be a useful technique for the inactivation of pathogens and therefore helpful in designing non-thermal HHP conditions for pressurization of hummus.  相似文献   

14.
The effects of ultraviolet-C radiation (UV-C, 11.8?W/m2), single-cycle and multiple-cycle high hydrostatic pressure (HHP at 200, 400 or 600?MPa) on microbial load and physicochemical quality of raw milk were evaluated. Reductions of aerobic plate count (APC) and coliform count (CC) by HHP were more than 99.9% and 98.7%, respectively. Inactivation efficiency of microorganisms increased with pressure level. At the same pressure level, two-cycle treatments caused lower APC, but did not show CC differences compared with single-cycle treatments. Reductions of APC and CC by UV-C were somewhere between 200?MPa and 400/600?MPa. Both HHP and UV-C significantly decreased lightness and increased pH, but did not change soluble solids content and thiobarbituric acid-reactive substances’ values. Two 2.5?min cycles of HHP at 600?MPa caused minimum APC and CC, and maximum conductivity. Compared with HHP, UV-C markedly increased protein oxidation and reduced darkening.  相似文献   

15.
ABSTRACT

We investigated the effect of high hydrostatic pressure (HHP) on the distribution of free amino acids and isoflavones in soybean immediately after pressure treatment (100–600?MPa, 10–60?min). HHP-treatment at 200 and 300?MPa resulted in high accumulation of free amino acids. Additionally, Gly, Val, and Pro levels increased even after HHP of 400?MPa. The application of HHP-treatment to soybean decreased sources of an astringent taste such as genistein-, daizein-, and glycitein-type molecules under all pressure conditions over 200?MPa. High accumulation of free amino acids with specific pressure–time conditions would be caused by the acceleration of proteolysis and specific amino acid metabolism. We concluded that HHP alone with no subsequent storage enabled the enrichment of specific amino acids such as GABA, Glu, Lys, and Pro in soybean. Soybean with enrichment of these amino acids and improved taste should be an innovative component of functional foods.  相似文献   

16.
ABSTRACT

The effect of high hydrostatic pressure (HHP) treatment (100–200?MPa, 10?min, 20°C) combined with sodium chloride and sodium phosphate on the physicochemical properties of beef gels was investigated. The water content, cooking losses, color, protein composition by SDS-PAGE analysis and texture parameters of beef gels were determined. The beef gels treated with high pressure at 150?MPa showed a synergistic effect in the increased water content and the decreased cooking losses compared with the unpressurized gels. The L*, a* and b* color values of beef gels were slightly decreased under HHP treatment at 100–200?MPa. In the SDS-PAGE analysis, the staining intensity of the α-actinin protein band was decreased in pressurized samples. The cohesiveness, adhesiveness, gel strength and modulus of elasticity were improved after HHP treatment. Application of high pressure treatment (150–200?MPa) before heat treatment would be beneficial for the manufacturing of low salt and/or low phosphate meat products for a healthy diet.  相似文献   

17.
应用同步辐射紫外真空圆二色光谱(SRCD)、傅里叶变换红外光谱(FTIR)和荧光光谱研究了超高压(HHP)处理对蘑菇多酚氧化酶(PPO)二级结构和三级结构的影响。HHP处理使蘑菇PPO的α-螺旋含量明显减少,二级结构发生改变。通过SRCD光谱和FTIR光谱分析得出的未处理或HHP处理蘑菇PPO的二级结构含量均存在一定的差异,这种差异可能是由于测量温度、酶液浓度和分析方法等多种因素造成的。荧光光谱表明,HHP处理后,蘑菇PPO溶液荧光光谱的强度降低,最大发射峰发生了红移,表明HHP处理改变了蘑菇PPO分子的三级结构。  相似文献   

18.
High hydrostatic pressure (HHP) has high success potential in pollen protein extraction, but its effect on pollen protein profiles has not been studied yet. The aim of this study is to put forward whether HHP processing causes a change in the protein profiles extracted from pollens or not. In this study, proteins extracted from Betula pendula pollens were studied at 100, 200 and 300?MPa at room temperature for 5?min. In addition, the efficiency of three different extraction solvents, namely phosphate buffer saline (PBS) buffer pH 7.5, trichloroacetic acid–acetone and Tris–HCl buffer pH 8.8, was also observed, and the results were compared with the conventional pollen protein extraction procedure. As a result, it is concluded that 200?MPa for 5?min has extracted similar amounts of protein compared with the conventional extraction method which lasted for 24?h, which lasted for 24 h. On the other hand, the application time for 200 MPa for 5 min is extremely shorter when it is compared to the conventional extraction method.  相似文献   

19.
高静水压对水稻种子萌发及同工酶的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
 利用不同静水压力和不同保压时间处理了籼稻粤香占种子,研究发现,随着压力的增加和保压时间的延长,水稻发芽率和成苗率明显下降,高压处理后的水稻在苗期的生长受到明显抑制,大约生长30 d株高才赶上对照;聚丙烯酰胺凝胶电泳显示高静水压力抑制了种子幼苗的酯酶(Esterase)同工酶的表达,但对其它几种同工酶如过氧化物酶(Peroxidase)、超氧化物歧化酶(Superoxider Dismutase)和苹果酸酶(Malic Enyme)等影响较小。利用同一压力和保压时间处理,不同类型的水稻(Oryza sativa L.)品种种子,其中包括籼稻(粤香占和南京11)、粳稻(秋光和台中65)和中间类型Bulu稻(Bulu Gendjah 和Bulu Rusa),结果发现所有类型水稻种子的发芽率和成苗率都显著降低,但因水稻类型的不同其影响程度也不同,籼型水稻南京11和粤香占的耐压性最弱,粳型水稻秋光和台中65最强,中间型Bulu水稻Bulu Gendjah和 Bulu Rusa居中。上述结果表明,静水高压能够显著降低水稻的种子的发芽率和成苗率,抑制幼苗前期的生长和酯酶同工酶的表达。  相似文献   

20.
The objective of this study was to investigate the effects of high hydrostatic pressure (HHP) on the stability of red blood cells (RBCs) and platelets. Bovine blood cells (n=5) were treated with the pressure of 55, 110, 154 and 220 MPa at 25 °C for 5 min. Light microscopy, atomic force microscopy and flow cytometry studies revealed that RBCs were morphologically stable up until the 220 MPa pressure treatments, at which surface modifications were observed. The platelets were found to be less stable than RBCs. HHP application did not cause any significant change in the signal intensity, band area and frequency values of the infrared bands with the exception that a significant variation was observed in the area of the cholesterol band. No statistically significant variations were observed in the secondary structure elements due to HHP treatment according to the artificial neural network study based on the FTIR data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号