首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(3-hydroxybutyrate), PHB has been structurally modified through reaction with maleic anhydride, MA. Transesterification reaction was carried out fixing the PHB and MA and besides time and temperature the concentration of the triethylamine (used as catalyst) was changed. Glass transition, melting and crystallization temperature obtained from DSC curves and thermal degradation temperatures obtained from TG traces were used to evaluate the influence of the reaction conditions on the modification of PHB according to factorial design. On the base of the results the optimum conditions are to perform the PHB modification reaction with MA reaction at 110°C for 1 h with 5% v/v triethylamine.  相似文献   

2.
The reaction between bleached banana pulp and pure maleic anhydride (MA) was investigated. The reaction was conducted in a reactor in the presence of xylene used as a solvent and sodium hypophosphite as catalyst. The appearance of infrared absorption bands at 1891 and 1708 cm?1 indicated that MA chemically reacted by esterification with bleached banana pulp. However, evidence of an esterification reaction was obtained between cellulose and MA. The production of fast‐responding bulk hydrogel with a high swelling ratio was also investigated. This hydrogel was synthesized first by the formation of maleated acrylamide particles and then by the graft copolymerization of the particles with cellulose. The maleated acrylamide particles were characterized with mass spectroscopy, and the formed hydrogl was characterized by FT‐IR. The esterification reaction between bleached banana pulp and maleated acrylamide was also studied. Steam absorption for bulk hydrogel, maleated acrylamide‐treated bleached banana pulp, MA‐treated cellulose and bleached banana pulp is higher than the steam absorption for untreated cellulose and bleached banana pulp. Compared with treated bleached banana pulp and cellulose, the hydrogel had very high swelling ratios and much faster swelling rates attributed to the collaboration of the ionized particles and bulk hydrogel. The number of ionic maleated acrylamide groups in the hydrogel affected the swelling behavior. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
This study examines the legitimacy of using the reaction kinetics of low molecular weight model compounds in solution to predict the chemical kinetics of polymer-bound species in a homogeneous melt. The reaction under study takes place between an aliphatic secondary amine, diisooctadecylamine (DiOA), and a 5-membered anhydride ring, saturated maleic anhydride (MA), forming an amic acid product. The MA species was present as a pendant graft on either a model compound, dodecane-g-(maleic anhydride) (dodecane-g-MA), or a polymer chain, linear low-density polyethylene-g-(maleic anhydride) (LLDPE-g-MA). Pseudo-second-order kinetics of the anhydride consumption are followed by infrared spectroscopy, either in situ in dodecane solution or by scanning frozen film samples taken from a linear low-density polyethylene melt. It was found that the LLDPE-g-MA/DiOA system reacted at a slightly slower rate than the dodecane-g-MA/DiOA system in the low-viscosity solution at 140°C. In the melt, the dodecane-g-MA/DiOA system experienced a small decrease in the overall reaction rate compared to the same reaction carried out in dodecane. However, the LLDPE-g-MA/DiOA system underwent a 65% decrease in the observed second-order rate constant on going from a solution to the melt. To explain these phenomena, the effects of diffusion, miscibility, and chain entanglements in the melt are examined here. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1573–1582, 1998  相似文献   

4.
A solid-state mechanochemical processing,that is,pan-milling,was used to conduct the esterification of poly(vinyl alcohol) (PVA) with maleic anhydride (MA) through stress-induced reaction.FTIR spectrum study indicated the presence of ester linkages and olefinic double bonds in maleic anhydride cross-linked PVA.Thermal properties of the cross-linked product were characterized by DSC.The results showed its glass transition temperature was 20℃higher than the original linear PVA and the thermal stability was also improved.  相似文献   

5.
A kinetic investigation on the monoesterification reaction of the maleic anhydride residue (MA) in styrene-maleic anhydride copolymers with aliphatic alcohols was carried out in ethyl benzene solution. By comparison to classic catalysts such as tributylamine (TBA) and pyridine, 4-dimethylaminopyridine (4DMAP) is by far the most effective catalyst for this reaction. While both general base and nucleophilic mechanisms contribute to the reaction catalyzed by TBA or pyridine, a nucleophilic mechanism prevails with 4DMAP. This reaction is reversible, and its chemical equilibrium constant decreases significantly with increasing temperature. Both kinetic and thermodynamic results showed that in the presence of 4DMAP, the forward and reverse reactions are second and first order, respectively. The existence of side reactions, reactivity of two styrene-maleic anhydride copolymers of different MA contents as well as two aliphatic alcohols of different lengths are also addressed. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
When maleic acid or maleic anhydride are added to a dichlorobutane solution of chlorohexene (as a model compound for allylic chlorides in poly(vinyl chloride)) and organotin carboxylates (maleates or laurate) heated at 80°C, the esterification reaction is strongly accelerated; moreover, the formation of hexadiene, which is the expected product of the competitive elimination reaction, is not observed. The reaction is first order with respect to both chlorohexene and the organic acid or anhydride, and may either be zero or first order with respect to the organotin carboxylate. 1H-NMR spectra and solubility experiments indicate the formation of complexes between the organotin carboxylate and the organic acid or anhydride. A concerted mechanism between the chlorohexene and these complexes is suggested. A few experiments show that the addition of these organic acids or anhydrides to a PVC formulation leads to improvement of the thermal stability.Finally, other organic acids and anhydrides were also used to complex the organotin carboxylate in order to rule out the complexation mechanism and to discuss the activated complex.  相似文献   

7.
Polycaprolactone-graft-maleic anhydride (PCL-g-MA) copolymer was prepared by grafting maleic anhydride onto PCL in a batch mixer and in an extruder using dicumyl peroxide as the initiator. The graft content was determined with the volumetric method by converting the anhydride functions to acid groups and then titrating with ethanolic potassium hydroxide. The grafted polymer was extracted with xylene to remove any unreacted monomer before the estimation step. The effect of temperature and the various concentrations of the initiator and monomer used for the grafting reaction were investigated. The presence of residual initiator in the reaction product was checked using thin-layer chromatography. Molecular weight determination was carried out for the pure and grafted polymer using gel permeation chromatography to determine if chain scission was present. Results indicate that maleic anhydride is grafted onto PCL using free radical initiators. The grafting reaction was confirmed by FTIR and NMR techniques. FTIR spectra showed absorption bands around 1785 and 1858 cm−1. NMR spectra gave signals for methine proton at 3.47 ppm. For a given peroxide level, a higher temperature or residence (reaction) time gave higher percentage of grafted MA. There was an optimum temperature and initiator concentration after which the percentage of MA grafted on PCL decreased. The number-average molecular weight, tensile strength, and the percent elongation of PCL-g-MA were comparable to those of PCL before grafting. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1139–1148, 1997  相似文献   

8.
The synthesis of novel CO2 philic surfactant using maleic anhydride and dipropylene tertiary butyl alcohol is reported. The synthesis involved the esterification of maleic anhydride to produce bis(2-(2-(tert-butoxy)propoxy)propyl) maleate and subsequent sulfonation of the esterified product. Para toluene sulfonic acid was employed as catalyst for the esterification reaction. The esterification reaction was optimized for the maximum yield of 98% of bis(2-(2-(tert-butoxy)propoxy)propyl) maleate. The esterification reaction kinetics employing heterogeneous catalyst were also studied. Although this is a bimolecular reaction, a first order reaction kinetics with respect to acid has been observed. The activation energy was found to be 58.71 kJ/mol. The diester was followed by the sulfonation process and a yield of 85% of surfactant was achieved. The synthesized surfactant successfully lowered down the IFT between CO2/brine to 1.93 mN/m. This surfactant has a great potential to be used for CO2-EOR applications.  相似文献   

9.
以马来酸酐为原料催化合成富马酸二甲酯   总被引:2,自引:0,他引:2  
用马来酸酐与甲醇为原料,在浓盐酸为主的复合催化剂的作用下,经一步反应合成富马酸二甲酯.讨论了催化剂用量、酯化时间、异构时间、醇与酸酐比等因素对反应的影响.最适宜的反应条件为:n(甲醇):n(酸酐)=4:1,异构时间0.7h,酯化时间4h,催化剂用量为马来酸酐质量的3.5%.  相似文献   

10.
固体酸SO_4~(2-)/ZrO_2-MoO_3催化合成富马酸二甲酯   总被引:1,自引:0,他引:1  
在固体酸SO2-4/ZrO2 MoO3催化下,由马来酸酐和甲醇催化合成了富马酸二甲酯.探讨了催化剂用量,原料配比,反应时间对产率的影响.最佳反应条件为:醇酸摩尔比为6∶1,反应时间3h,催化剂占反应物总质量的1.5%,产物收率在93%以上.  相似文献   

11.
Calcium alginate-chitosan (CA/CS) blended membranes were prepared and crosslinked with maleic anhydride (MA) for the pervaporation (PV) separation of ethylene glycol (EG)/water mixtures at 30°C. The structure and properties of blend membranes were studied with the aid of FTIR, XRD, TGA, and SEM. The effect of experimental parameters such as feed composition, membrane thickness, and permeate pressure on separation performance of the MA crosslinked membranes were determined in terms of flux, selectivity, and pervaporation separation index. Sorption studies were carried out to evaluate the extent of interaction and degree of swelling of the blend membranes in pure, as well as in binary mixtures. The experimental results suggested that the crosslinked membrane (M-CA/CS) exhibited a good selectivity of 302 at a normalized flux of 0.38 kg.m? 2.h? 1.10 μ m at 30°C for 96.88 wt% EG aqueous solution.  相似文献   

12.
The synthesis and characterisation of three sets of symmetric dimeric compounds composed of seven-membered oxazepinedione heterocyclic rings were carried out. All the dimers possess the tetradecyl- (n = 14) alkyl side chain attached to the nitrogen atom of the oxazepinedione core. The oxazepinedione core in turn was connected with varied connecting spacers (n = 4, 6, 8, 10 and 12). The dimers were spectroscopically characterised by FT-IR, 1H-NMR, 13C-NMR and elemental analysis techniques. The compounds were investigated for liquid crystalline properties using differential scanning calorimetry and polarising optical microscopy with heating assembly. The precursor imines 2a–e itself started exhibiting liquid crystalline SmA/tilted hexatic mesophase. Further fusion of 2a–e with maleic anhydride, succinic anhydride and phthalic anhydride gave the novel oxazepinedione-derived symmetric dimers 3a–e, 4a–e and 5a–e respectively. The dimers 3a–e and 4a–e did not exhibit any liquid crystal (LC) properties. However, the phthalic anhydride-fused oxazepinediones 5a–e show monotropic nematic liquid crystalline phase. The results indicate that the formation of mesophase is dependent on the type of fused oxazepinedione ring.  相似文献   

13.
Curing kinetics of diglycidyl ether of bisphenol-A (DGEBA) in the presence of maleic anhydride (MA)/or nadic anhydride (NA) or mixture of MA/NA: 4,4′-diaminodiphenyl sulfone (DDS) in varying molar ratios were investigated using differential scanning calorimetry. Curing behaviour of DGEBA in the presence of varying amounts of DDS:MA/NA was evaluated by recording DSC scans at heating rates of 5, 10, 15 and 20°C min−1. The peak exotherm temperature depends on the heating rate, structure of the anhydride as well as on the ratio of anhydride: DDS. Thermal stability of the isothermally cured resins was evaluated by thermogravimetry. The char yield was highest in case of resins cured using mixture of DDS:MA (0.75:0.25; sample EM-1) and DDS:NA (0.75:0.25, sample EN-1).  相似文献   

14.
AB2-type-prepolymerized monomer was rapidly (2 h) prepared at room temperature (25 ℃) using commercially available maleic anhydride (MA) and diethanolamine (DEA) as raw materials. By employing toluene-p-sulfonic acid as a catalyzer, a series of hyperbranched poly(amide-ester) (HBPAE) were successfully synthesized from prepared AB2 monomer by solution condensation polymerization through "one-step process" or "pseudo one-step process" (using pentaerythritol as a center core). The processes were carried out at high temperature of 120 ℃ for 6 h in air atmosphere (inert protection free) with reduced pressure distillation (0.08--0.096 MPa). The results of FT-IR, UV-Vis, TGA, and intrinsic viscosity testing by Ubbelodhe viscometer showed that the prepared HBPAEs possess three-dimensional configuration with unsaturated conjugate structure, large numbers of branches and numerous terminal hydroxyl groups. These result in their low viscosity, high solubility and thermal stability.  相似文献   

15.
The radical polymerization of maleic anhydride(MA),styrene(ST)with the vinyl groups introduced onto the surface of the nano-sized silica via solution polymerization method was developed.The methacryloxypropyl nano-sized silica(MPNS)was used as macromonomer and polymerized with maleic anhydride and styrene by initiating with BPO in toluene.The structure and properties of MPNS/SMA nano-composite were characterized by FT-IR spectra and TEM.Meanwhile,it was applied as tanning agent compared with the traditional styrene-maleic anhydride copolymer in leather.It was found that the applied leather had better quality characteristics with the addition of the nano-sized silica.  相似文献   

16.
The synthesis and use in enhanced oil recovery applications of a novel CO2-philic surfactant derived from maleic anhydride and 2-butyl-1-octanol is reported. The synthesis involved the esterification of maleic anhydride to produce diester followed by sulfonation of the esterified product. The esterification reaction parameters were optimized for the maximum yield of 98.4%. By employing a silica sulfuric acid catalyst, the reaction kinetics of esterification were also investigated. The activation energy was found to be 45.58 kJ/mol. The sulfonation reaction of the esterified product was performed by using sodium bisulfite, and a yield of 82% of surfactant was achieved. The synthesized surfactant lowered the interfacial tension between CO2/brine to 3.1 mN/m and effectively reduced the CO2 mobility. This surfactant has a great potential to be used for CO2 mobility control for CO2?EOR applications.   相似文献   

17.
The mechanism of esterification of cotton cellulose by a polycarboxylic acid was investigated using Fourier transform infrared spectroscopy (FT-IR). The infrared spectroscopic data indicate that a polycarboxylic acid esterifies with cotton cellulose through the formation of an acid anhydride intermediate. A five-member cyclic anhydride intermediate was identified in the cotton fabric treated with poly(maleic acid). The five-member cyclic anhydride is a reactive intermediate and readily esterifies when reaction sites are available. We also found that those polycarboxylic acids, which form five-member cyclic anhydride intermediates, crosslink cotton cellulose more effectively than those polycarboxylic acids which form six-member cyclic anhydride intermediates. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The copolymers of styrene and maleic anhydride resin (PSt/MA) was synthesized by free radical polymerization and characterized by means of FTIR. It is shown that the PSt/MA copolymer has rather strong coordination ability to UO2 2+ ions by chelation with the carboxylate group, and the microstructures of the U(VI)-PSt/MA complexes can be well controlled. The influence factors on UO2 2+ ions were also investigated and described in detail, such as contact time, solid/liquid ratio, pH value, ethanol content, and initial concentration. It was found that the maximum adsorption quantity of UO2 2+ was 831 mg/g. Experiments show that PSt/MA can recover UO2 2+ ions with high adsorption selectively from a simulated industry solution containing Ca2+ and Mg2+ as impurities. The adsorption kinetic data were best described by the pseudo-second-order equation, indicating that the chemical adsorption was the rate-limiting step. And there are very good correlation coefficients of linearized equations for Langmuir model, which indicated that the sorption isotherm of the PSt/MA for UO2 2+ can be fitted to the Langmuir model. After five times of repeated tests for the hydrogel it still remained its excellent adsorption.  相似文献   

19.
Summary Thermal and dynamic mechanical properties of carbon dioxide and propylene oxide alternative copolymer, poly(propylene carbonate) (PPC), and the end-capped PPC with maleic anhydride were investigated by means of TG and DMA. A master curve of the storage modulus vs. frequency can be deduced from the isochronal curves. Physical parameters of both plain and MA end-capped PPC were discussed. The results showed that for maleic anhydride (MA) end-capping PPC, an improvement of its thermal stability and mechanical properties accompanied with some modifications of the viscoelastic behavior were obtained.  相似文献   

20.
Reaction of monofunctional oligoisobutylene with maleic anhydride is described. In a preliminary study, thermal dehydrochlorination of α-chlorooligoisobutylene is examined; the double bond of the resulting olefin can be endo or exo. Ene reaction of maleic anhdride with this oligomer is first studied on a model, 2,4,4-trimethyl-1-pentene; resulting mixture is completely analysed by 13C- and 1H-NMR spectroscopy: two isomeric oligomer anhydrides are formed. Ene synthesis is also carried out on α-(2-methyl-2-propenyl)oligoisobutylene; only exo bonds are able to react; the functionality of the resulting oligomeric anhydride mixture is 0.92. In the presence of a catalyst (dichloromaleic anhydride) disubstitution can take place, because the double bond formed in the first reaction is able to react a second time with maleic anhydride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号