首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 利用低温高压电阻原位测量装置(自箝铍青铜活塞-圆筒式压砧),在0~1.05 GPa静水压力范围内,对以层状钙钛矿结构为主相、名义成分为La1.0Ca2.0Mn2O7的锰氧化物样品进行了压阻效应研究。实验观测到异常的压阻效应。在低温5~150 K范围内,压力为0.55 GPa时,样品呈现出高达40%的压阻效应,而且,金属-绝缘体相变温度在低压范围内随压力的增加而增加,但随着压力的进一步增加而减小。  相似文献   

2.
A hybrid-type piston-cylinder pressure cell for the electron spin resonance (ESR) measurement has been developed. The cylinder of this pressure cell consists of a NiCrAl inner cylinder and a CuBe outer sleeve, and all inner parts are made of zirconium oxide which has good transmittance to the millimeter and submillimeter waves. We confirmed that the pressure reaches 2.1 GPa. We have also developed a transmission-type high-field ESR system having two different modulation methods for this pressure cell. A test measurement without pressure cell for the two-dimensional orthogonal-dimer spin system of SrCu2(BO3)2 has been done successfully in the wide frequency region. The combination of this electromagnetic wave transmission-type pressure cell and this high-field ESR system is a promising tool for the study of the pressure-induced phase transition of SrCu2(BO3)2.  相似文献   

3.
We measured the heat capacity of CeIrSi3 (100 mK<T<6 K) under high pressure up to P=1.38 GPa. The measurements have been used a quasiadiabatic method utilizing a CuBe piston-cylinder pressure cell in a dilution refrigerator. At 0 GPa, a sharp anomaly which indicates the antiferromagnetically transition is observed at TN=5 K. TN decreases monotonically with increasing pressure up to P=1.38 GPa. The magnetic entropy is released below TN only 19% of R ln 2 at 0 GPa. And the magnetic entropy decreases with increasing pressure up to 1.38 GPa, 64% compared to that at 0 GPa.  相似文献   

4.
俞宇颖  习锋  戴诚达  蔡灵仓  谭华  李雪梅  胡昌明 《物理学报》2012,61(19):196202-196202
进行了10—27 GPa应力范围内Zr51Ti5Ni10Cu25Al9金属玻璃的平面冲击实验以研究其高压-高应变率加载下的塑性行为.由样品自由面粒子速度剖面的分析获得了冲击加载过程的轴向应力,并通过轴向应力与静水压线的比较获得剪应力.实验结果表明,尽管存在明显的松弛效应,但Zr基金属玻璃的Hugoniot弹性极限随着冲击应力的增加而增加.然而,塑性波阵面上的剪应力则显示先硬化而后软化现象,而且软化的幅度随冲击应力的增加而增加.冲击加载下Zr基金属玻璃的上述剪应力变化特征与分子动力学模拟结果比较一致,但与压剪实验结果和一维应力冲击实验结果明显不同.  相似文献   

5.
Q. Chen  K.C. Chan  L. Liu 《哲学杂志》2013,93(28):3705-3715
Due to their excellent wear resistant properties and high strength, as well as a low Young's modulus, Zr-based bulk metallic glasses (BMGs) are potentially suitable biomaterials for low-friction arthroplasty. The wear characteristics of the Zr60.14Cu22.31Fe4.85Al9.7Ag3 bulk amorphous alloy against ultra-high-molecular-weight polyethylene (UHMWPE) compared to a CoCrMo/UHMWPE combination were investigated in two different wear screening test devices, reciprocating and unidirectional. Hank's solution and sterile calf bovine serum were selected as the lubricant fluid media. It was found that different fluid media had insignificant effect on polyethylene wear against BMG counterfaces. The wear behaviour obtained on both test devices demonstrated that Zr-based BMG achieved UHMWPE counterface wear rates superior to conventional cast CoCrMo alloy, where the wear rate of UHMWPE is decreased by over 20 times. The tribological performance of these joints is superior to that of conventional metal-on-polymer designs. Contact angle measurements suggested that the advantage of BMG over a CoCrMo alloy counterface is attributed to its highly hydrophilic surfaces.  相似文献   

6.
魏新权  毕甲紫  李然 《物理学报》2017,66(17):176408-176408
研制具有极限力学性能的金属材料一直是材料研究人员的梦想.超高强块体非晶合金是一类具有极高断裂强度(4 GPa)、高热稳定性(玻璃化转变温度通常高于800 K)和高硬度(通常高于12 GPa)的新型先进金属材料,其代表合金材料Co-Ta-B的断裂强度可达6 GPa,为目前公开报道的块体金属材料的强度记录值.本文系统地综述了该类超高强度块体非晶合金的组分、热学性能、弹性模量及力学性能,阐述了该类材料的研发历程;以弹性模量为联系桥梁,阐明了该类超高强块体非晶合金材料各物理性能的关联性,并揭示了其高强度、高硬度的价键本质.相关内容对于材料工作者了解该类超高强度金属材料的性能和特点,并推进该类材料在航空航天先进制造、超持久部件、机械加工等领域的实际应用有着重要意义.  相似文献   

7.
Ultrafine-grained (0.2–0.3?µm) WC–Ni hardmetals with a low Ni content (3–5?wt%) were developed using new production techniques based on adding an appropriate amount of VC and Cr3C2, combined with the strong mixing of raw materials. Their uniaxial compressibility was subsequently compared with that of existing WC–Ni and WC–Co hardmetals to assess their suitability for use as anvils in various high pressure experiments, particularly those associated with neutron or magnetic studies. The ultimate compressive strength of the newly developed hardmetals was over 7.7?GPa, which was higher by 1.2?GPa than that of the existing WC–Ni hardmetal ‘MF10’. When these hardmetals were used as anvils, a pressure of approximately 16?GPa was generated using a Paris-Edinburgh-type apparatus with φ8?mm culet, thereby proving that they can allow the physical properties of various materials to be measured at higher pressures than is possible with existing hardmetals.  相似文献   

8.
Zr41Ti14Cu12.5Ni10Be22.5bulk metallic glass (BMG) is annealed at 573 K under 3 GPaand its structural relaxation is investigated by X-ray diffraction, ultrasonic study, compression as well as sliding wear measurements. It is found that after the ZrTiCuNiBe BMG sample was annealed under high pressure, the mechanical properties were improved. Moreover, the BMG with relaxed structure exhibits markedly different acoustic properties. These results are attributed to the fact that relaxation under high-pressure results in a microstructural transformation in the BMG.  相似文献   

9.
Diamond anvil cells (DAC) provide the highest static pressures ≥1?Mbar. Because of the low intensity of neutron sources, for a long time it was thought impossible to use DAC or other anvil cells in neutron experiments. We describe pressure cells with diamond and sapphire anvils and neutron instrumentation allowing neutron diffraction experiments to be carried out under pressures as high as 50?GPa, temperatures down to 0.1?K, and applied magnetic fields up to 7.5?T.  相似文献   

10.
The complete elastic tensor of Fe0.94O (wüstite) has been determined to 10 GPa using acoustic interferometry at GHz frequencies inside a diamond-anvil cell. The soft mode (C44) elastic constant of FeO is reduced by 20% over the experimental pressure range. An unusual discontinuity in the pressure derivatives of C11 and C12 at 4.7+/-0.2 GPa corresponds to the pressure at which the onset of a magnetic ordering transition is observed by high-pressure M?ssbauer spectroscopy and neutron powder diffraction. Our new results combined with literature structural high P-T data suggest that there is a magnetic, although still cubic, phase of FeO between approximately 5 and approximately 17 GPa.  相似文献   

11.
The compression properties of Zr41Ti14Cu12.aNi10Be22.5, Zr44.4Nb7Cu13.5Ni10.8Be24.3 bulk metallic glasses and Ni77P23 binary amorphous alloy are investigated at room temperature up to 24 GPa, 39 GPa and 30.5 GPa, respectively, using in-situ high pressure energy dispersive x-ray diffraction with a synchrotron radiation source. The pressure-volume relationship of Ni77P23 amorphous alloy is consistent well with the second order BirchMurnaghan (B-M) equation within the experimental pressure range. However, under higher pressure, the experimental data of Zr-based specimens deviate from the B-M equation. Compare to the binary amorphous alloy less excess free volume existing in the bulk metallic glass and multi-component atomic configuration results in a two-stage relationship between compressibility and pressure.  相似文献   

12.
Abstract

A low-temperature high-pressure apparatus was designed using commercial cryogenic equipment. Pressures up to 1 GPa and temperatures down to 40 K can be obtained in a volume of up to 30 cm3. The apparatus is of the piston-cylinder type with a piston diameter of 45 mm, and the pressure can be varied at all temperatures, An adaptive temperature control system keeps the temperature inside the pressure cylinder constant to within ±0.1 K.  相似文献   

13.
Klotz S  Takemura K  Str?ssle T  Hansen T 《J Phys Condens Matter》2012,24(32):325103, 1-325103, 6
We investigated freezing of pure glycerol as well as glycerol-water (GW) mixtures with 3:1 and 3:2 volume fractions as a function of pressure in the 0-10?GPa range by ruby fluorescence spectroscopy and neutron scattering. We find that the glass transition pressure increases from 5.5?GPa for pure glycerol to 6.5?GPa for the 3:1?GW mixture, with unusually small pressure gradients above. For higher water concentrations close to 3:2, phase separation occurs above 2?GPa where most of the water is expelled in the form of ice VII. The results suggest that glycerol is able to effectively hydrogen bond not more than ≈2.5 H(2)O molecules per glycerol, which seems to support conclusions from molecular dynamics simulations. The data indicate that these fluids could become important as pressure transmitting media for neutron scattering in the 0-7?GPa range, including at low temperatures.  相似文献   

14.
This paper presents the SEM micrographs for the three-point bending fracture surfaces of Zr-based, Ce-based and Mg-based bulk metallic glasses (BMGs), which show the dimple structures in the three kinds of BMGs. The shapes of the giant plastic deformation domain on the fracture surface are similar but the sizes are different. The fracture toughness KC and the dimple structure size of the Zr-based BMG are both the largest, and those of the Mg-based BMG are the smallest. The fracture toughness KC and the dimple structure size of the Ce-based BMG are between those of the Zr-based and the Mg-based BMG. Through analyzing the data of different fracture toughnesses of the BMGs, we find that the plastic zone width follows w = (KC/σY)2/(6π).  相似文献   

15.
To investigate the magnetic properties of disordered Fe70Pt30 Invar alloy under high pressure, measurements of the real part of the AC susceptibility (χ) were made under pressure up to 7.5 GPa in the temperature range 4.2–385 K using a cubic anvil high-pressure apparatus. The Curie temperature (TC) decreased with increasing pressure, and then, two new high-pressure magnetic phases appeared. These results show that the ferromagnetism of Fe–Pt Invar alloy becomes weaker, and the antiferromagnetic interaction becomes dominant with increasing pressure.  相似文献   

16.
K. Knorr  W. Depmeier 《高压研究》2013,33(3-6):297-303
Abstract

Two piston/cylinder type pressure cells for neutron powder diffraction are presented. They provide a large sample volume and hence allow rapid data collection at moderate flux neutron sources. Structure refinements from the diffraction data are possible. The maximum attainable pressure is above 2 GPa for Ti/Zr zero-scattering pressure cylinders. Both cells may be equipped with a micro-furnace. This allows measurement up to 700 K, simultaneously to the application of pressure. The low temperature setup for the cell-I is presented which will allow experiments down to 1·5K.  相似文献   

17.
The structure of GeO(2) glass was investigated at pressures up to 17.5(5)?GPa using in situ time-of-flight neutron diffraction with a Paris-Edinburgh press employing sintered diamond anvils. A new methodology and data correction procedure were developed, enabling a reliable measurement of structure factors that are largely free from diamond Bragg peaks. Calibration curves, which are important for neutron diffraction work on disordered materials, were constructed for pressure as a function of applied load for both single and double toroid anvil geometries. The diffraction data are compared to new molecular-dynamics simulations made using transferrable interaction potentials that include dipole-polarization effects. The results, when taken together with those from other experimental methods, are consistent with four densification mechanisms. The first, at pressures up to ??5?GPa, is associated with a reorganization of GeO(4) units. The second, extending over the range from ??5 to 10?GPa, corresponds to a regime where GeO(4) units are replaced predominantly by GeO(5) units. In the third, as the pressure increases beyond ~10?GPa, appreciable concentrations of GeO(6) units begin to form and there is a decrease in the rate of change of the intermediate-range order as measured by the pressure dependence of the position of the first sharp diffraction peak. In the fourth, at about 30?GPa, the transformation to a predominantly octahedral glass is achieved and further densification proceeds via compression of the Ge-O bonds. The observed changes in the measured diffraction patterns for GeO(2) occur at similar dimensionless number densities to those found for SiO(2), indicating similar densification mechanisms for both glasses. This implies a regime from about 15 to 24?GPa where SiO(4) units are replaced predominantly by SiO(5) units, and a regime beyond ~24?GPa where appreciable concentrations of SiO(6) units begin to form.  相似文献   

18.
Magnetic and structural properties of an amorphous alloy based on iron are investigated. The properties and state of the alloy are changed under hydrostatic pressure of up to 1.3 GPa. An increase in the pressure leads to a linear increase in the maximum magnetic induction and a linear decrease in the remanence. Two nanopore fractions with average sizes of ~20 and 150 nm are revealed in the alloy with the use of small-angle x-ray diffraction. The application of the pressure decreases the size of nanopores and increases the average distance between their boundaries, i.e., increases the average sizes of continuity regions in the alloy. It is established that the relative change in the magnetic characteristics is linearly related to the change in the size of the continuity regions in the alloy. Upon extrapolation to zero nanoporosity, the remanence reduces to zero. The inference is made that the nanopores play a dominant role (as compared to other structural defects) in the magnetic properties of the alloy.  相似文献   

19.

The ultrasonic study results for dependence of the elastic wave velocities and second-order elasticity coefficients of the polycrystalline aluminum alloy AMg6 and its nanocomposite n-AMg6/C60 on hydrostatic pressure up to 1.6 GPa have been described. The ultrasonic research has been carried out using a highpressure ultrasonic piezometer based on the piston-cylinder device. The pressure derivatives of the secondorder elastic constants of these materials established in the present study have been compared with the results of the third-order elastic constants measurements of the test alloys using the Thurston–Brugger method. Involving available literature data, we determined the relationships between the pressure derivatives of the second-order elastic constants of the AMg6 alloy and the Mg-content and nanostructuring.

  相似文献   

20.
Solid oxygen is the only elementary molecular magnet. Under the very high pressure of 96 GPa oxygen transforms into a metal and a superconductor. Theory predicts a nonmagnetic state occurring before the transition into the superconducting xi phase. Nevertheless, until now there was no direct evidence of a magnetic collapse in high-pressure oxygen. For the first time direct information is provided on magnetic properties of the epsilon phase, which is sandwiched between the antiferromagnetic delta phase and the superconducting xi phase. We used magnetic neutron diffraction. The data show that the long-range magnetic order disappears at the delta-epsilon transition. The magnetic collapse occurs at P approximately equal to 8 GPa, far below the pressure of the insulator-metal (superconductor) transition. The collapse is preceded by a decrease in temperature of transition towards the long-range magnetically ordered state (T(LRO)) in the delta phase, at P = 7.6 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号