首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 531 毫秒
1.
分夏、冬季采集南昌大学前湖校区室外和3个不同室内环境中的PM2.5,测定有机碳(OC)和元素碳(EC),并分析室内、外碳气溶胶质量浓度及其分布特征;利用OC-EC关系式半定量分析室内排放源;结合室内、外二次有机碳(SOC)和SOC/OC的分布进一步讨论不同室内排放源的特征及对SOC的影响;对4个采样点的8个碳组分丰度特征比较分析,结果表明复印/打印机对室内OC的贡献高,8个碳组分的丰度分布特征与其它排放源具有较明显的差异。  相似文献   

2.
在广州市中山大学采样点进行了为期1年的大气细粒子(PM2.5)采样,监测分析得到PM2.5及有机碳(OC)、元素碳(EC)和水溶性有机碳(WSOC)等组分的质量浓度,并进行了比较和评价分析。结果表明广州市细粒子碳污染较严重。对OC、EC和WSOC质量浓度的月变化和季节变化特征进行了讨论,并分析了原因。OC、EC浓度相关性好,表明OC、EC来源大部分相同。根据OC/EC比值,估算二次有机碳(SOC)量,结果是SOC占OC的1/3。讨论了SOC和SOC/OC比值的季节分布,结果证明SOC夏季生成比冬季多。  相似文献   

3.
研究了锦州市秋冬季大气颗粒物中重金属元素Al、Cd、Cr、Cu、Zn、Pb的化学形态和生物有效性。结果表明锦州市主要商业街和交通主干道的PM10和PM2.5污染比较严重,冬季取暖期间PM2.5平均超标3.4倍,最高超标达8.1倍。PM10和PM2.5中重金属Zn、Pb和Cu的含量较高,在PM10中最大值分别为0.903、0.392、0.272μg·m-3。Cd、Cu、Pb、Zn在大气颗粒物中主要以酸可提取态(F1)和氧化物结合态(F2)存在,这两种形态在环境中易迁移和转化,特别是Cd的F1和F2形态含量之和占总量的95%,其毒性较大。Cd的含量较低(0.006~0.018μg·m-3),但富集因子高(1880~2819),表明Cd人为污染严重;Cu、Zn和Pb的富集因子较高(100),表明其受人类活动影响较大。Cd和Zn在PM2.5中生物有效性系数分别为0.56和0.58,对大气环境和人体健康危害较大。  相似文献   

4.
燃烧源PM2.5凝结洗涤脱除实验研究   总被引:3,自引:1,他引:3  
利用蒸汽在燃烧源PM2.5表面凝结,促使PM2.5凝结长大,建立一套燃烧源PM2.5凝结洗涤的实验台;考察了颗粒粒径分布、蒸汽添加量、液气比等对两种燃烧源PM2.5凝结洗涤脱除效果的影响。采用电称低压冲击器 (ELPI)在线测试分析燃煤和燃油PM2.5凝结洗涤前后的数浓度和粒径分布特性,并用SEM和XPS对两种不同燃烧源的颗粒进行了形貌和元素组分分析。结果表明,燃煤和燃油产生的PM2.5形貌和组分具有较大的差别,燃煤PM2.5主要为硅铝矿物质,而燃油PM2.5主要为含炭物质;相同条件下,燃煤PM2.5相变脱除效果优于燃油PM2.5;随着蒸汽添加量的增加,两者的脱除效率均升高;随粒径的增大,脱除效率提高;蒸汽添加量为0.08kg/m3时,粒径为0.4μm的燃煤和燃油细颗粒的脱除效率分别81%和72%;此外,适当增加液气比有利于凝结长大含尘液滴的脱除。  相似文献   

5.
北京大气颗粒物PM10和PM2.5中水溶性阴离子的组成及特征   总被引:11,自引:0,他引:11  
利用离子色谱技术对北京PM10和PM2.5中的水溶性阴离子(F^-,Cl^-,NO3^-和SO4^2-)进行了分析测定,并讨论了它们的分布、浓度变化和来源.F^-,Cl^-,NO3^-和SO4^2-离子的总质量分别占PM10和PM2.5总量的18.2%和24.2%,是大气颗粒物的重要组分.其中F^-主要存在于PM10的粗颗粒中,而Cl^-,NO3^-和SO4^2-则主要在细颗粒中富集.PM10和PM2.5中Cl^-在总氯中所占的比例分别达到了49.5%和40.3%,并与总氯具有非常好的相关性.氯在大气中明显富集,其主要的人为来源为煤的燃烧.SO4^2-和NO3^-具有比较好的相关性,其浓度在7月份最高,9、10月较低,进入冬季采暖期之后浓度升高.在PM10和PM2.5中NO3^-与SO4^2-的质量之比分别在0.1~0.6和0.1~0.5之间,说明燃煤对它们的贡献要大于汽车尾气.  相似文献   

6.
广州市住宅室内外大气羰基化合物的监测分析   总被引:5,自引:0,他引:5  
选择代表性住宅,在其室内、外同步开展大气羰基化合物的监测分析,准确评价大气羰基化合物的污染状况,揭示其来源。用涂覆2,4-硝基苯肼(DNPH)的硅胶采样管收集羰基化合物,借助高效液相色谱完成样品分析,共检测了13种羰基化合物,其中甲醛、乙醛两种物质的平均浓度最高,占被测物质总浓度的30%~67%。甲醛、乙醛的浓度,夏季室内平均为53.47μg/m3、17.81μg/m3,室外平均为15.00μg/m3、10.97μg/m3;冬季室内平均为37.97μg/m3、11.49μg/m3,室外平均为10.44μg/m3、8.15μg/m3。大气羰基化合物呈现夏季高于冬季、室内大于室外的浓度变化规律。甲醛/乙醛和乙醛/丙醛比值结果反映城市大气羰基化合物的人为污染。  相似文献   

7.
研究了城市交通路口大气气溶胶污染状况及气溶胶中多环芳烃(PAHs)的污染特征.在福州市主要交通路口之一的五四路和二环路的交叉路口采集大气中PM2.5、PM5、PM10、PM2.5~5.0、PM5~10、PM10~100及TSP.将优化的高效液相色谱编程荧光法用于各切割粒径气溶胶样品中的12种多环芳烃分析.研究结果表明:交通路口颗粒物中的飘尘(PM10)占总悬浮颗粒物(TSP)的70%;PM5占飘尘(PM10)的70%;而细粒子PM2.5占PM5的73%.交通源所产生的PAHs主要存在于细粒子PM2.5中,通过特征标志的多环芳烃的比值识别,交通路口大气颗粒物中的多环芳烃主要来源于机动车尾气排放.  相似文献   

8.
采用自行搭建的大气颗粒物采集平台,对室内可吸入肺颗粒物PM2.5进行了采集实验,并运用扫描电子显微镜分析技术(SEM)对室内PM2.5颗粒物样品进行了形貌观察和分析。实验在同一房间进行,以每天只采集一个PM2.5样品的方式,分别采集了室内不同体积空气中的PM2.5。实验表明:随着抽气体积的增加,可吸入肺颗粒物PM2.5样品的斑点颜色逐渐加深;对于抽气体积在3 m3以上的室内颗粒物样品,肉眼已无法分辨,但SEM可以显著分辨;SEM的分析结果表明,成都市城东龙潭工业园室内可吸入肺颗粒物PM2.5由形貌各异、大小不等的固态颗粒组成,颗粒物轮廓清楚、表面特征明显,粒径在0.01~3μm之间;长时间沉积PM2.5实验显示,室内PM2.5中存在大量不规则片状颗粒物,粒径在1~3μm之间。通过室内可吸入肺颗粒物PM2.5采集实验与SEM观察,可再根据元素分析技术进一步分析室内PM2.5,从而找出室内PM2.5污染物的来源,为制定相应的污染防治措施提供科学依据。  相似文献   

9.
提出了一种新的元素示踪法, 用于估算和区分北京大气颗粒物污染的主要组成矿物气溶胶的外来源和本地源. 通过采集、分析具有代表性的、可覆盖北京所有地区的气溶胶、地面扬尘以及外来源代表地区内蒙多伦等地的表层土, 发现气溶胶中元素比值Mg/Al是区分北京地区矿物气溶胶本地源与外来源有效的元素示踪体系. 矿物气溶胶即沙尘、硫酸盐和硝酸盐为主的无机污染气溶胶, 和有机污染气溶胶同是北京大气颗粒物的重要组成部分, 其中矿物气溶胶占总颗粒物(TSP)的32%~67%, 占细粒子(PM2.5)的10%~70%, 在沙尘暴期间分别高达74%和90%. 根据元素示踪法, 首次估算出北京地区矿物气溶胶中本地源与外来源的相对贡献量. 春季外来源占TSP的62% (38%~86%), 占PM10的69% (52%~90%), 占PM2.5的76% (59%~93%); 冬季外来源占TSP的69% (52%~83%), 占PM10的79% (52%~93%), 占PM2.5的45% (7%~79%); 而在夏季和秋季, 外来源仅占~20%. 外来源在冬春季对北京矿物气溶胶的贡献要高于夏季, 这显然与冬春季气候差异有关. 沙尘暴期间外来源贡献最高达97%, 成为北京大气颗粒物的主要来源.  相似文献   

10.
抗氧化剂是塑料产品中常见的一类添加剂,其在城市大气颗粒物中的污染以及影响因素目前仍缺乏认识。该文以广州市为研究区域,评估细颗粒物(PM2.5)中以抗氧化剂为主的常见塑料添加剂的污染状况。结果表明,PM2.5中的抗氧化剂仅以其氧化产物和降解产物的形式存在,总浓度为0.64 ~ 19.3 ng/m3,较高浓度主要出现在化工和塑料生产企业较为密集的区域。污水处理厂对周边大气中部分抗氧化剂的降解产物也具有显著贡献。气象条件对颗粒物中污染物浓度的影响与污染物的理化性质有关,其中,太阳辐射的影响最为显著,可促进半衰期较长的污染物在颗粒物中的富集。化工和塑料生产企业周边的居民通过呼吸暴露塑料添加剂的剂量高于其他采样点。广州十溴联苯醚的致癌风险远低于风险阈值,也普遍低于我国其他城市的整体风险水平。  相似文献   

11.
An analytical method was established for the simultaneous determination of 39 polycyclic aromatic hydrocarbons (PAHs) in air. The method was applied to a survey of gaseous and particulate PAHs in household indoor air. The survey was performed in 21 houses in the summer of 1999 and in 20 houses in the winter of 1999-2000 in Fuji, Japan. Thirty-eight PAHs were determined in indoor and outdoor air in the summer, and 39 PAHs were determined in indoor and outdoor air in the winter. The concentrations of gaseous PAHs in indoor air tended to be higher than those in outdoor air in the summer and winter. The concentrations of particulate PAHs in indoor air were the same as or lower than those in outdoor air in the summer and winter. PAH profiles, correlations between PAH concentrations, and multiple regression analysis were used to determine the factors affecting the indoor PAH concentrations. These results showed that gaseous PAHs in indoor air were primarily from indoor emission sources, especially during the summer, and that indoor particulate PAH concentrations were significantly influenced by outdoor air pollution.  相似文献   

12.
An analytical method was established for the determination of benzene and 13 of its alkyl derivatives. The method was applied to a survey of indoor pollution that investigated the usefulness of the method, concentration levels, seasonal variations, profiles, correlations between compounds, and factors that affected indoor pollution by these compounds. The survey was performed in 21 houses in the summer of 1999 and 20 houses in the winter of 1999-2000 in Fuji, Japan. All the target compounds were detected in the indoor and outdoor air of all houses. Outdoor concentrations of benzene ranged from 0.779 to 3.17 microg/m3 in summer and from 1.35 to 6.04 microg/m3 in winter, whereas indoor concentrations of benzene ranged from 0.694 to 3.11 microg/m3 in summer and from 1.65 to 6.89 microg/m3 in winter. Indoor concentrations of the target compounds, except for benzene, were elevated, compared with outdoor concentrations. Because indoor and outdoor concentrations of benzene and its derivatives in summer were lower than in winter, the emission of these compounds may be increased by use of a heater and other variables present in winter. Profiles of the compounds, correlations between the compounds, and factors that affected indoor pollution (determined by multiple regression analysis) were investigated. These results suggested that indoor benzene predominantly penetrated from outdoors and that other benzene derivatives were emitted from indoor sources, such as paint solvents and kerosene heaters.  相似文献   

13.
Two field measurements for atmospheric fine particles were conducted in Baoan district of Shenzhen during the summer and winter in 2004. Totally 30 sets of 24 h samples were collected, and then the mass concentrations and chemical compositions were determined. The seasonal varia- tions and secondary pollution characteristics of fine particles during the sampling periods were dis-cussed with meteorological factors. The results show that seasonal variations of atmospheric particles are significant in Shenzhen. The average mass concentrations of PM2.5 and PM10 in summer were 35 μg·m-3 and 57 μg·m-3, respectively, and those in winter were 99 μg·m-3 and 135 μg·m-3, respec-tively. The concentrations of both PM2.5 and PM10 in winter increased 184% and 137%, respectively, compared to those in summer. PM2.5 accounted for 61% and 75% of PM10 in summer and in winter, respectively, indicating severe fine particle pollution in Shenzhen. During the summer and winter sampling periods, the mean OC/EC ratios were 3.4 and 1.6, respectively. The estimated secondary organic carbon (SOC) averagely accounted for 56% and 6% of the total OC in summer and in winter, respectively, which implies a major contribution of SOC to OC in summer. During the continuous high temperature period in summer, both the concentrations and fractions of secondary aerosol compo-nents in PM2.5 were highly elevated, suggesting severe secondary pollution again. The prevailing wind was from South China Sea in summer, and the air quality was good. The prevailing wind in winter was from Mainland China to the north, and the polluted air mass led to poor air quality.  相似文献   

14.
PM10 samples were collected at an urban site of Nagoya City during September, 2003, to August, 2004, and annual variations of the concentrations of the elements in PM10 samples were examined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The annual concentration variations of ca. 30 elements in ambient air were in the range from sub-ng m(-3) to several microg m(-3). From an evaluation by the enrichment factors of the elements, elements such as Al, Ca, Fe, Mg, Ti, Mn, Ba, Sr, Ce, La, Nd, Co, Cs, and Pr, in PM10 samples were found to have originated mostly from natural sources, while the elements such as S, Zn, Pb, Cu, Ni, Sb, Sn, Cd, Bi, W, Tl, and In originated from anthropogenic emission sources. Furthermore, in seasonal variations of the elemental concentrations of PM10 samples in ambient air, the elements originated mostly from natural sources provided significantly high concentrations in spring during the "Kosa" period (the dust season from March to May). On the other hand, the elements mainly from anthropogenic emission sources provided relatively higher concentrations in autumn and winter, which may be explained by the fact that the urban atmospheric structure is stabilized by the temperature-inversion layer formed over the city in those seasons. In addition, all of the elements provided significantly low concentrations in the summer, due to the dilution effect of the oceanic winds as well as due to the convection of air mass up to the high levels.  相似文献   

15.
A new element tracer technique has firstly been established to estimate the contributions of mineral aerosols from both inside and outside Beijing. The ratio of Mg/Al in aerosol is a feasible element tracer to distinguish between the sources of inside and outside Beijing. Mineral aerosol, inorganic pollution aerosol mainly as sulfate and nitrate, and organic aerosol are the major components of airborne particulates in Beijing, of which mineral aerosol accounted for 32%―67% of total suspended particles (TSP), 10%―70% of fine particles (PM2.5), and as high as 74% and 90% of TSP and PM2.5, respectively, in dust storm. The sources from outside Beijing contributed 62% (38%―86%) of the total mineral aerosols in TSP, 69% (52%―90%) in PM10, and 76% (59%―93%) in PM2.5 in spring, and 69% (52%―83%), 79% (52%―93%), and 45% (7%―79%) in TSP, PM10, and PM2.5, respectively, in winter, while only ~20% in summer and autumn. The sources from outside Beijing contributed as high as 97% during dust storm and were the dominant source of airborne particulates in Beijing. The contributions from outside Beijing in spring and winter are higher than those in summer, indicating clearly that it was related to the various meteorological factors.  相似文献   

16.
PM 10 and PM 2.5 (PMx) have been recently introduced as new air quality standards in the EU (Council Directive 1999/30/EC) for particulate matter. Different estimates and measurements showed that the limit values for PM 10 will be exceeded at different locations in Europe, and thus measures will have to be taken to reduce PMx mass concentrations. Source apportionment has to be carried out, demanding comparable methods for ambient air and emission sampling and chemical analysis. Therefore, a special ambient-air sampler and a specially designed emission sampler have been developed. Total-reflection X-ray fluorescence analysis (TXRF) was used for multi-element analyses as a fast method with low detection limits. For ambient air measurements, a sampling unit was built, impacting particle size classes 10–2.5 μm and 2.5–1.0 μm directly onto TXRF sample carriers. An electrostatic precipitator (ESP) was used as back-up filter to also collect particles <1 μm directly onto the TXRF sample carriers. Air quality is affected by natural and anthropogenic sources, and the emissions of particles <10 μm and <2.5 μm, respectively, have to be determined to quantify their contributions to the so-called coarse (10–2.5 μm) and fine (<2.5 μm) particle modes in ambient air. For this, an in-stack particle sampling system was developed, according to the new ambient air quality standards and in view of subsequent analysis by TXRF. These newly developed samplers, in combination with TXRF analyses, were employed in field campaigns to prove the feasibility and capabilities of the approach. Ambient air data show the quantification of a wide spectrum of elements. From those concentrations, PMx ratios were calculated as an indicator for different sources of elements. Results useful for source apportionment are also the elemental day/night ratios calculated to determine local contributions to PMx mass concentrations. With regard to the emission measurements, results of mass and elemental concentrations obtained in two different processes (steel industry) show that the new PM 10/PM 2.5 cascade impactor and measurements with TXRF give characteristic fingerprints for different sources. Size-fractionated ambient air and emission sampling, together with multi-element analysis, prove to be a useful approach to derive information for source–receptor modeling, a method necessary to set up effective abatement strategies to reduce PMx mass concentrations.  相似文献   

17.
农业收割期间排放的颗粒物是农忙期影响大气气溶胶组成的主要来源,因此明确农业收割期间排放的大气颗粒物排放特征具有重要意义。本实验立足河南省新乡市集约化农田实验基地,开展冬小麦区农业收割期间的大气颗粒物及其组分排放特征实验。结果表明收割期间的PMcoarse比其它时期高8.20%,农业站点收割时期的PMcoarse比其它时期高了72.22%,明确了其颗粒物污染特征为仅PM10升高,而非PM10和PM2.5同时升高,同时PM10的升高非PM2.5升高引起的;含量最高的前5种元素是Al、Ca、Fe、K、Mg;收割期间,Fe的特征比值最高为0.79;Ca2+K+离子百分含量在PMcoarse中占比最高;特征值为0.81和0.78。综合水溶性离子和元素结果,Ca2+K+Fe浓度协同变化可作为小麦收割过程颗粒物对大气污染影响的指纹识别,以区别于其他污染类型;便于大气污染防治行政主管部门有针对性的查污、防污、治污,提高人民群众生活环境的空气质量。  相似文献   

18.
A study was conducted in Antigonish, Nova Scotia, to determine the extent to which acid rain related pollutants are present in indoor ambient air. The pollutant study included: fine (0 to 2.5 micron) and coarse (2.5 to 10 micron) particulates, sulphates, nitrates, acidity (H2SO4 and HNO3), SO2 and NO2. During the 3 1/2 month study, maximum levels of 173n equivalent/m3 fine sulphate and 55 n equivalent/m3 H2SO4 were recorded for outdoor air within the town site compared to corresponding values of 110 n equivalent/m3 and 13 n equivalent/m3 for indoor air. Based on back trajectory analysis, wind direction, and sulphuric acid content, it was postulated that local or medium range pollution sources are predominant in the winter while long range transport originating from the United States produces the major episodes when SW winds are persistent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号