共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase equilibrium in binary ethanol mixtures found in alcoholic beverage production has been analyzed using a cubic equation of state (EoS) and suitable mixing and combining rules. The main objective of the study is the accurate modeling of the congener concentration in the vapor phase (substances different from ethanol), considered to be an important enological parameter in the alcohol industry. The Peng–Robinson (PR) equation of state has been used and the Wong–Sandler (WS) mixing rules, that include a model for the excess Gibbs free energy, have been incorporated into the equation of state constants. In the Wong–Sandler mixing rules the van Laar (VL) model for the excess Gibbs energy has been used. This combination of equations of state, mixing rules and combining rules are commonly applied to high pressure phase equilibrium and have not yet been treated in a systematic way to complex low pressure ethanol mixtures as done in this work. Nine binary ethanol + congener mixtures have been considered for analysis. Comparison with available literature data is done and the accuracy of the calculations is discussed, concluding that the model used is accurate enough for engineering applications. 相似文献
2.
Dilek
zmen 《Fluid Phase Equilibria》2006,250(1-2):70-75
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + solvent) were measured at T = 298.2 K and atmospheric pressure. The solvents were methyl isoamyl ketone (5-methyl-2-hexanone), ethyl isoamyl ketone (5-methyl-3-heptanone) and diisobutyl ketone. The tie-line data were correlated by means of the NRTL and UNIQUAC equation, and compared with results predicted by the UNIFAC method. A comparison of the extracting capabilities of the solvents was made with respect to distribution coefficients, separation factors, and solvent free selectivity bases. 相似文献
3.
Vapor pressure of methyl glycolate and the binary isothermal vapor–liquid equilibrium of ethylene glycol and methyl glycolate were measured by using static method. The experimental data was correlated with the Wilson and NRTL activity coefficient models. Good agreement between the experimental data and model is achieved. 相似文献
4.
Isobaric vapor-liquid equilibrium (VLE) data for acetic acid + water, acetic acid + n-propyl acetate, acetic acid + iso-butyl acetate, acetic acid + water + n-propyl acetate, acetic acid + water + iso-butyl acetate are measured at 101.33 kPa with a modified Rose still. The nonideal behavior in vapor phase caused by the association of acetic acid are corrected by the chemical theory and Hayden-O’Connell method, and analyzed by calculating the second virial coefficients and apparent fugacity coefficients. The VLE data for acetic acid + water, acetic acid + n-propyl acetate, and acetic acid + iso-butyl acetate are correlated through the NRTL and UNIQUAC models using the nonlinear least square method. The obtained NRTL model parameters are used to predict the ternary VLE data. The ternary predicted values obtained in this way agree well with the experimental values. 相似文献
5.
Kun-Jung Lee Wei-Kuan Chen Liang-Sun Lee Chieh-Ming J. Chang Jing-Wei Ko 《Fluid Phase Equilibria》2009,280(1-2):42-48
Isothermal vapor–liquid equilibrium (VLE) at 333.15 K and 353.15 K for four binary mixtures of benzene + toluene, benzene + N-methylformamide, toluene + m-xylene and toluene + N-methylformamide have been obtained at pressures ranged from 0 kPa to 101.3 kPa. The NRTL, UNIQUAC and Wilson activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Soave–Redlich–Kwong equation of state in calculating the vapor mole fraction. Liquid and vapor densities were also measured by using two vibrating tube densitometers. The P–x–y diagram and the activity coefficient indicate that two mixtures of benzene + toluene and toluene + m-xylene were close to the ideal solution. However, two mixtures containing N-methylformamide present a large positive deviation from the ideal solution. The excess Gibbs energy in the benzene + toluene mixture is negative indicates that it is an exothermic system. 相似文献
6.
Isobaric vapor–liquid equilibrium data have been measured for the ternary system acetone + 2,2′-oxybis[propane] + cyclohexane, and its constituent binaries at 94 kPa and in the temperature range 324–350 K in a vapor–liquid equilibrium still with circulation of both phases. The dependence of the interfacial tensions of these mixtures on concentration was also determined at atmospheric pressure and 303.15 K, using the maximum bubble pressure technique.From the experimental results, it follows that both the ternary and binary mixtures exhibit positive deviations from ideal behavior and, additionally, azeotropy is present for the binaries that contain acetone. The application of a model-free approach allows conclusions about the reliability of the present vapor–liquid equilibrium data for all the indicated mixtures. Furthermore, the determined interfacial tensions exhibit negative deviation from linear behavior for all the analyzed mixtures, and aneotropy is observed for the acetone + cyclohexane mixture.The vapor–liquid equilibrium data of the binary mixtures were well correlated using the NRTL, Wilson and UNIQUAC equations. In a similar manner, the interfacial tensions of the binary mixtures were smoothed using the Redlich–Kister equation. Scaling of these models to the ternary mixture allows concluding that both the vapor–liquid equilibrium data and the interfacial tensions can be reasonably predicted from binary contributions. 相似文献
7.
(Liquid–liquid) equilibrium (LLE) data are investigated for mixtures of (water + propionic acid + oleyl alcohol) at 298.15, 308.15 and 318.15 K and atmospheric pressure. The solubility curves and the tie-line end compositions of liquid phases at equilibrium were determined, and the tie-line results were compared with the data predicted by the UNIFAC method. The phase diagrams for the ternary mixtures including both the experimental and correlated tie-lines are presented. The distribution coefficients and the selectivity factors for the immiscibility region are calculated to evaluate the effect of temperature change. The reliability of the experimental tie-lines was confirmed by using Othmer–Tobias correlation. It is concluded that oleyl alcohol may serve as an adequate solvent to extract propionic acid from its dilute aqueous solutions. The UNIFAC model correlates the LLE data for 298.15, 308.15 and 318.15 K with a root mean square deviation of 5.89, 6.46, and 6.69%, respectively, between the observed and calculated mole concentrations. 相似文献
8.
Ernesto Vercher A. Vicent Orchills Pablo J. Miguel Vicenta Gonzlez-Alfaro Antoni Martínez-Andreu 《Fluid Phase Equilibria》2006,250(1-2):131-137
Isobaric vapor–liquid equilibria for the ternary system acetone + methanol + lithium nitrate have been measured at 100 kPa using a recirculating still. The addition of lithium nitrate to the solvent mixture produced an important salting-out effect and the azeotrope tended to disappear for small contents of salt. The experimental data sets were fitted with the electrolyte NRTL model and the parameters of the Mock's model were estimated. These parameters were used to predict the ternary vapor–liquid equilibrium which agreed well with the experimental one. 相似文献
9.
A flow-type method was adopted to measure the vapor–liquid equilibria for methanol + methyl laurate and methanol + methyl myristate systems at 493–543 K, near the critical temperature of methanol (Tc = 512.64 K), and 2.16–8.49 MPa. The effect of temperature and fatty acid methyl esters to the phase behavior was discussed. The mole fractions of methanol in liquid phase are almost the same for both systems. In vapor phase, the mole fractions of methanol are very close to unity at all temperatures. The present vapor–liquid equilibrium data were correlated by PRASOG. A binary parameter was introduced to the combining rule of size parameter. The binary parameters of methanol + fatty acid methyl ester systems were determined by fitting the present experimental data. The correlated results are in good agreement with the experimental data. The vapor–liquid equilibria for methanol + methyl laurate + glycerol and methanol + methyl myristate + glycerol ternary systems were also predicted using the methanol + fatty acid methyl ester binary parameters. The mole fractions of methanol in vapor phase are around unity even if glycerol is included in the systems. 相似文献
10.
The modeling of liquid–vapor equilibrium in ternary mixtures that include substances found in alcoholic distillation processes of wine and musts is analyzed. In particular, vapor–liquid equilibrium in ternary mixtures containing water + ethanol + cogener has been modeled using parameters obtained from binary mixture data only. The congeners are substances that although present in very low concentrations, of the order of part per million, 10−6 to 10−4 mg/L, are important enological parameters [1] and [2]. In this work two predictive models, the PSRK equation of state and the UNIFAC liquid phase model and two semipredictive activity coefficient models: NRTL and UNIQUAC have been used. The results given by these different models have been compared with literature data and conclusions about the accuracy of the models studied are drawn, recommending the best models for correlating and predicting the phase equilibrium in this type of mixtures. 相似文献
11.
Isothermal vapor–liquid equilibrium data at 333.15 K are reported for the ternary system di-isopropyl ether (DIPE) + n-propyl alcohol + toluene and the binary subsystems DIPE + n-propyl alcohol, DIPE + toluene and n-propyl alcohol + toluene by using headspace gas chromatography. The excess molar volumes at 298.15 K for the same binary and ternary systems were also determined by directly measured densities. The experimental binary and ternary vapor–liquid equilibrium data were correlated with different GE models and the excess molar volumes were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively. 相似文献
12.
Erol nce 《Fluid Phase Equilibria》2005,230(1-2):58-63
Liquid–liquid equilibrium (LLE) data of water + acetic acid + dimethyl adipate have been determined experimentally at 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining binodal curve and tie-lines. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. UNIFAC and modified UNIFAC models were used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data of CH2, CH3COO, CH3, COOH, and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region. 相似文献
13.
The liquid–liquid equilibrium of water/1-propanol/methyl ethyl ketone (MEK) at 25°C was significantly modified by the presence of dissolved potassium chloride. Water is salted out of the organic phase while MEK is more preferentially salted out of the aqueous phase than 1-propanol. These results in considerable enlargement of the two-phase region and enhancement of the extractive efficiency of MEK for the separation of 1-propanol from its aqueous mixture. Good correlation of the liquid–liquid equilibria (LLE) of the system in the presence of potassium chloride up to saturation was obtained with Tan’s modified NRTL phase model for multicomponent solute–solvent mixtures with the solute–solvent interaction parameters expressed as a third-order polynomial function in salt concentration. Similar to the observation reported for vapour–liquid equilibrium (VLE) of solvent–solute mixtures, salting-in and salting-out of the solvent components from the respective phases can be predicted according to the relative solute–solvent interaction parameters of the solvent components in the two phases. 相似文献
14.
Dilek
zmen 《Fluid Phase Equilibria》2008,269(1-2):12-18
(Liquid–liquid) equilibrium (LLE) data for the ternary systems of {water + carboxylic acid (formic, acetic, propionic or butyric acid) + dimethyl maleate} were measured at T = 298.2 K and atmospheric pressure. Selectivity values for solvent separation efficiency were derived from the tie-line data. A comparison of the extracting capabilities of the solvent was made with respect to distribution coefficients, separation factors, and solvent-free selectivity bases. The reliability of the data was ascertained from Othmer–Tobias plots. The experimental data were correlated using the UNIQUAC and NRTL (α = 0.2) equations, and the binary interaction parameters were reported. The phase diagrams for the ternary mixtures including both the experimental and calculated tie-lines were presented. 相似文献
15.
Isobaric vapor–liquid equilibrium (VLE) data of the reactive quaternary system ethanol (1) + water (2) + ethyl lactate (3) + lactic acid (4) have been determined experimentally. Additionally, the reaction equilibrium constant was calculated for each VLE experimental data. The experimental VLE data were correlated using the UNIQUAC equation to describe the chemical and phase equilibria simultaneously. For some of the non-reactive binary systems, UNIQUAC binary interaction parameters were obtained from the literature. The rest of the binary UNIQUAC parameters were obtained by correlating the experimental quaternary VLE data obtained in this work. A maximum pressure azeotrope at high water concentration for the binary reactive system ethyl lactate + water has been calculated. 相似文献
16.
Akl M. Awwad Amar H. Al-Dujaili Abdul-Muhsin A. Al-Haideri Hatim M. Essa 《Fluid Phase Equilibria》2008,270(1-2):10-14
Liquid–liquid equilibrium data, both binodal and tie lines are presented for the pseudo-ternary systems: {(sulfolane + 2-ethoxyethano) (1) + octane (2) + toluene (3)} at 293.15 K. The experimental liquid–liquid equilibrium data have been correlated using NRTL and UNIQUAC models, and the binary interaction parameters of these components have been presented. The correlated tie lines have been compared with the experimental data. The comparisons indicate that both NRTL and UNIQUAC models satisfactorily correlated the equilibrium compositions. The tie-line data of the studied systems also were correlated using the Hand method. 相似文献
17.
Experimental measurement and modeling of the vapor–liquid equilibrium of carbon dioxide + chloroform
Aaron M. Scurto Christopher M. Lubbers Gang Xu Joan F. Brennecke 《Fluid Phase Equilibria》2001,190(1-2):135-147
Isothermal bubble and dew points, saturated molar volumes, and mixture critical points for binary mixtures of carbon dioxide+chloroform (trichloromethane) (CO2/CHCl3) have been measured in the temperature region 303.15–333.15 K and at pressures up to 100 bar. Mixture critical points are reported at 313.15, 323.15, and 333.15 K. The data were modeled with the Peng–Robinson equation of state using both the van der Waals-1 (vdW-1) mixing rule and the Wong–Sandler (WS) mixing rule incorporating the UNIQUAC excess free energy model. The WS mixing rule provided a better representation of the data than did the vdW-1 mixing rule, though with three adjustable parameters instead of one. The extrapolating ability of both of the mixing rules was investigated. Using the parameters regressed at 323.15 K, the WS mixing rule yielded better extrapolations for the composition dependence at 303.15, 313.15, and 333.15 K than the vdW-1 mixing rule. 相似文献
18.
The isothermal (vapour + liquid) equilibrium (VLE) (P–T–xi–yi) was determined the binary systems of (ethyl acetate + diethyl carbonate) from T = (373.2 to 453.2) K, (ethyl acetate + phenyl acetate) at T = 373.2 K, and (diethyl carbonate + phenyl acetate) at T = 373.2 K, while the VLE (P–T–xi) of three diphenyl carbonate-containing binary systems was also determined experimentally at temperatures from (373.2 to 453.2) K. The experimental results show no azeotrope formation and near ideal solution behaviour for each binary system. These new VLE (P–T–xi–yi) data have been passed by the point, area, and infinite dilution thermodynamic consistency tests. The Wilson-HOC, the NRTL-HOC, and the UNIQUAC-HOC models were applied to correlate the VLE results and the optimal values of the model parameters have been determined through data reduction. Comparable results were obtained from these three models. 相似文献
19.
Isobaric vapor–liquid equilibrium data at 50, 75, and 94 kPa have been determined for the binary system ETBE + propan-1-ol, in the temperature range 325–368 K. The measurements were made in a vapor–liquid equilibrium still with circulation of both phases. Mixing volumes have been also determined from density measurements at 298.15 K and 101.3 kPa and, at the same temperature and pressure, the dependence of interfacial tension on concentration has been measured using the pendant drop technique. According to experimental results, the mixture presents positive deviation from ideal behavior and azeotropy is present at 75 and 94 kPa. No azeotrope was detected at 50 kPa. The mixing volumes of the system are negative over the whole mole fraction range, and the interfacial tensions exhibit negative deviation from the linear behavior. The activity coefficients and boiling points of the solutions were well correlated with the mole fraction using the Wohl, Wilson, NRTL, UNIQUAC equations. Excess volume data and interfacial tensions were correlated using the Redlich–Kister model. 相似文献
20.
The thermodynamic consistency of binary vapor–liquid equilibrium data has been examined for 46 binary alcohol + hydrocarbon systems with 310 data sets in total (145 isobaric and 165 isothermal sets) using the PAI test proposed in our previous study. The PAI test permits an overall check of the data by combining three tests: a point test, an area test, and an infinite dilution test. In this work, the PAI test was incorporated with the NRTL equation for fitting data. The results of the PAI test for the vapor–liquid equilibrium data showed that the PAI test was able to strictly select reliable data. 相似文献