首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hybrid inorganic/organic interpenetrating polymer network (IPN) of a three-dimensional network structure zeolite crystal (13X, powder) and crosslinked or linear polystyrene (PS) was prepared and characterized by differential scanning calorimetry (DSC), solid-state13C-NMR, and scanning electron microscopy (SEM). The size and shape of the crystalline zeolite particles were revealed on SEM micrographs in both the pure zeolite and the IPNs. Solubility tests and the results of DSC with solid-state 13C-NMR confirm that some organic PS chains are incorporated within the internal three-dimensional channels of the zeolite particles. We speculate that the internal PS chains may adopt an extended “one-dimensional” conformation and exhibit no bulk polymer glass transition. These novel hybrid inorganic/organic IPNs are a new kind of IPN structure. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Polymer composites with inorganic fillers of different nature, concentration, particle size and shape were studied by optical spectroscopy (UV, visible, and IR ranges), optical and electron microscopy, and dynamic light scattering. An experiment to determine the size of the filler particles in aqueous suspension in the polymer matrix of a composite and directly in powders was conducted. It was shown that with increasing concentration aggregation of particles on drying an aqueous slurry occurs to a greater extent than for the filler in the polymer composite. It was demonstrated by examples that the optical spectroscopy can be successfully used for the analysis of sub-micron and micron sized filler particles in a polymer matrix or suspension.  相似文献   

3.
A facile and versatile solution‐based approach was developed to prepare semiconductor metal oxide nanobelt‐conducting organic polymer core‐shell nanocomposites. Well‐defined nanobelts of several types of oxide nanobelts were combined with conducting polymer [polypyrrole (PPy) and polyaniline (PANi)] via in situ polymerization in aqueous solution to obtain a new type of inorganic–organic composite nanostructure. Samples were characterized by using X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, electron energy loss spectra, high‐resolution transmission electron microscopy, and ultraviolet–visible techniques. Electron energy loss spectra revealed the existence of C?C and C? N bonds in coating layers to prove the encapsulation of PPy or PANi. The red‐shift of absorption band at high‐energy was observed for PPy‐encapsulated composites via ultraviolet–visible spectroscopy, and significant absorption band shifts were also encountered to PANi‐encapsulated composites, which suggest possibilities of band‐gap tuning of such metal oxide‐conducting polymer composites to be applied especially in solar cell devices. However, the sacrifice of nanobelts‐core led to hollow structures of PPy and PANi, which expands the synthetic strategies to prepare conducting polymer nanotubes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2892–2900, 2005  相似文献   

4.
The development of low-cost, large-area electronic applications requires the deposition of active materials in simple and inexpensive techniques at room temperature, properties usually associated with polymer films. In this study, we demonstrate the integration of solution-processed inorganic films in light-emitting diodes. The layered transition metal dichalcogenide (LTMDC) films are deposited through Li intercalation and exfoliation in aqueous solution and partially oxidized in an oxygen plasma generator. The chemical composition and thickness of the LTMDC and corresponding transition metal oxide (TMO) films are investigated by X-ray photoelectron spectroscopy. The morphology and topography of the films are studied by atomic force microscopy. X-ray powder diffraction is used to determine the orientation of the LTMDC film. Finally, the LTMDC and their corresponding oxides are utilized as hole-injecting and electron-blocking materials in polymer light-emitting diodes with the general structure ITO/LTMDC/TMO/polyfluorene/Ca/Al. Efficient hole injection and electron blocking by the inorganic layers result in outstanding device performance and high efficiency.  相似文献   

5.
花状银微纳米结构的合成及SERS性质   总被引:2,自引:0,他引:2  
通过简便的水溶液方法制备出一种新颖的由纳米片组成的花状银微纳米结构, 采用XRD, SEM, TEM, HRTEM和SAED等手段进行了表征. 考察了反应体系pH值对产物形貌的影响, 并对花状银微纳米结构的形成机理进行了初步探讨. 所制得的微纳米结构由许多纵横交错的纳米片组成. 实验结果表明, 制备的银微纳米结构作为表面增强拉曼散射(Surface-enhanced Raman Scattering, SERS)的基底具有很强的活性.  相似文献   

6.
We report on self-assembly of polymer and molybdenum oxide chains into a new class of lamellar hybrid materials. Aqueous ammonium molybdate and polyvinyl alcohol (PVA) or carboxymethyl cellulose (CMC) were used as the starting materials. Ammonium molybdate was hydrolyzed into layered molybdenum oxide under acidified conditions. The organic polymer chains and the inorganic molybdenum oxide layers self-assemble and pack into new hybrid composites. Scanning electron microscope (SEM) images and polarized microscopy show that these two new materials have typical lamellar structure. Transmission electron microscope (TEM) images show that the layer thickness is about 100 nm. X-ray diffraction (XRD) data confirm the formation of inorganic molybdenum oxide. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) data gave thermal behavior of these composites. The mechanism of this hybrid reaction and the templating function of polymers were discussed in this paper. A special entropy effect was discovered when polymer was used as guest species. This entropy effect makes polymers preferential candidates as guest species rather than small molecules when fabricating organic/inorganic layered hybrid materials. We believe that this opens a new way to create organic/inorganic hybrid superstructures.  相似文献   

7.
Micron-sized polystyrene or PS particles were first prepared by dispersion polymerization. Then a series of polystyrene/poly(styrene-2-hydroxyethyl methacrylate) or PS/P(S-HEMA) composite polymer particles was prepared by seeded copolymerization using different amounts of 2-hydroxyethyl methacrylate (HEMA) at the constant core/shell ratio of 1/0.5. The produced PS seed and composite polymer particles were characterized by transmission electron microscopy. Adsorption behaviors of some biologically active macromolecules were studied under similar conditions. In each case the magnitude of adsorption on composite polymer particles decreased with the increase in HEMA content in the recipe, which means that the hydrophobic interaction between the surface of the particles and biomolecules decreased. The specific activities of trypsin aqueous solution and adsorbed trypsin on PS seed and composite polymer particles prepared with different HEMA contents were also measured and compared. The activity of adsorbed trypsin on composite polymer particles improved significantly with the incorporation of hydrophilic HEMA.  相似文献   

8.
Three-dimensional (3D) bismuth flowerlike micro/nanocomposite architectures were successfully prepared on Cu substrates by electrochemical self-assembly in aqueous solution at room temperature. The morphology, crystal structure, and composition were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). Results show that the synthesized 3D architectures are built with dozens of two-dimensional (2D) single crystal nanoscaled petals, which are high-pressure-stable bcc phase Bi. The thickness of the 2D petals is about 60 nm. The effects of the concentration of Bi3+ ions and the electric potential gradient on the evolution of the Bi flowerlike micro/nanocomposite architectures are discussed.  相似文献   

9.
An anion exchanger consisting of amino-functionalized MCM-41 type mesoporous silica coated with temperature-responsive polymer, poly(N-isopropylacrylamide) (PNIPAM), was synthesized in this study. The structure of this composite was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and elemental analysis. The XRD pattern showed that the synthesized composite had the ordered hexagonal structure and the interplanar spacing, d(100), was around 40?. The amount of surface-grafted thermosensitive polymer was estimated to be about 0.8wt.% by elemental analysis. The adsorption-desorption behavior of methyl orange in this synthesized material depended on the temperature of aqueous solution: at 25°C, the reversible adsorption-desorption of methyl orange was repeated with changing pH of the solution; at 40°C, the methyl orange was not adsorbed and desorbed independent of pH of the solution.  相似文献   

10.
A novel surface modification method for titania nanoparticles is provided via the surface‐initiated photocatalytic polymerization with the aid of acrylic acid (AA) or sodium styrene sulfonate (NaSS). The properties of modified titania nanoparticles are investigated with aqueous electrophoresis measurements, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Then the modified titania is used as Pickering stabilizer for further polymerization and the morphology of the resulted polymer microspheres is characterized by TEM and field‐emission scanning electron microscopy. It is proven that the addition of AA or NaSS for the surface‐initiated polymerization can obviously affect the structure and morphology of the final polymer composite microspheres. The formation mechanism of several kinds of polymer particles is also proposed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Based on hydrogen-bonding layer-by-layer (LBL) assembly in aqueous solution, poly(vinylpyrrolidone) (PVPON) and a spherical polymer brush with a poly(methylsilsesquioxane) (PSQ) core and poly(acrylic acid) (PAA) hair chains were used to fabricate composite multilayer thin films. Hydrogen bonding as the driving force was confirmed by FT-IR spectrometry. A simple method (Filmetric F20) was introduced to determine the thickness and refractive index of the films. The film thickness was found to be a linear function of the number of bilayers. The average increase in thickness per bilayer is 28.3 nm. The film morphology was characterized with scanning electron microscopy and atomic force microscopy. The images obtained from the two instruments show a great resemblance. The films were further calcined to get an inorganic film by removing the organic components, or treated with tetrabutylammonium fluoride (TBAF) to remove the PSQ core and get an organic film. The optical properties and morphological changes induced by these treatments were also studied.  相似文献   

12.
A novel solid-state polymer electrolyte was constructed using layer-by-layer (LbL) polyelectrolyte assembly of linear poly(ethylenimine) (LPEI) and poly(acrylic acid) (PAA), combined with a plasticization step using oligoethylene glycol dicarboxylic acid (OEGDA). This composite film exhibits a relatively high ionic conductivity of 9.5 x 10(-5) S/cm at 25 degrees C and 22% relative humidity. Detailed characterization of the composite was undertaken using grazing-angle Fourier transform infrared (GA-FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and impedance spectroscopy. After immersing the LPEI/PAA films into OEGDA aqueous solutions, the films exhibited a swelling behavior and increased surface roughness indicative of porosity induced by reorganization of ionic interactions between LPEI and PAA in acidic solution. This internal porous structure allows inclusion of OEGDA within the multilayer and increased ionic conductivity under ambient conditions due to the combined effects of plasticization of the LbL matrix by atmospheric water as well as the added mobility of ions in molten OEGDA within the composite.  相似文献   

13.
Superabsorbent polymer acrylamide (AM)/itaconic acid (IA) and its nanocomposite were synthesized by redox polymerization in an aqueous solution of both monomers with mica used as an inorganic additive. The influences of IA concentration, mica content, and crosslinker concentration on the water absorption and physical properties of the superabsorbent polymer and its nanocomposite were examined. Water absorbency in artificial urine by the synthesized copolymers, and the gel strength of the superabsorbent copolymers and their nanocomposites, were tested with loads of 0.28 or 0.70 psi. Transmission electron micrographs and X‐ray diffraction confirmed that the polymer chains were successfully intercalated into the silicate layers in the mica. The water absorbency and the artificial urine absorbency of the composite with an AM‐to‐IA mole ratio of 95:5, 0.2% mol N‐MBA, and 5% w/w mica were 748 ± 5 and 76 ± 2 g g?1, respectively, whilst the neat copolymer achieved only 640 ± 7 and 72 ± 2 g g?1 in water and artificial urine, respectively. The viscoelastic behavior suggested that the swollen gel of the nanocomposites exhibited mechanical stability and elasticity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A novel way is introduced to control polymerization routes and morphology of final polymer microspheres during the Pickering polymerization. Cetyltrimethylammonium bromide (CTAB)‐modified silica and different initiators are used simultaneously to determine the initiation location, nucleation step, and morphology of final particles. As Pickering stabilizer, the CTAB‐modified silica is characterized by dynamic light scattering. The size and distribution of the oil droplets stabilized by the silica nanoparticles is observed by optical microscopy. The resulted silica/polymer composite microspheres are characterized by scanning electron microscopy and transmission electron microscopy. The silica content is measured by thermogravimetric analysis. It is proven that both surface property of inorganic particles and type of initiators can greatly affect the polymerization routes and the morphology of the obtained polymer microspheres. Detailed formation mechanisms of several kinds of polymer particles are also proposed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Composite polymer electrolyte films comprising polyethylene oxide (PEO) as the polymer host, LiClO4 as the dopant, and NiO nanoparticle as the inorganic filler was prepared by solution casting technique. NiO inorganic filler was synthesized via sol-gel method. The effect of NiO filler on the ionic conductivity, structure, and morphology of PEO-LiClO4-based composite polymer electrolyte was investigated by AC impedance spectroscopy, X-ray diffraction, and scanning electron microscopy, respectively. It was observed that the conductivity of the electrolyte increases with NiO concentration. The highest room temperature conductivity of the electrolyte was 7.4?×?10?4 S cm?1 at 10 wt.% NiO. The observation on structure shows the highest conductivity appears in amorphous phase. This result has been supported by surface morphology analysis showing that the NiO filler are well distributed in the samples. As a conclusion, the addition of NiO nanofiller improves the conductivity of PEO-LiClO4 composite polymer electrolyte.  相似文献   

16.
Hybrid organic/inorganic composite polymer electrolyte membranes based on a poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) grafted membrane and varying concentrations of zeolite were investigated for application in proton exchange membrane fuel cells (PEMFC). A proton conducting comb copolymer consisting of poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(styrene sulfonic acid) (PSSA) side chains, i.e. P(VDF‐co‐CTFE)‐g‐PSSA (graft copolymer) with 47 wt% of PSSA was synthesized using atom transfer radical polymerization (ATRP) and solution blended with zeolite. Upon incorporation of zeolite, the symmetric stretching band of both SO group (1169 cm?1) and the ? OH group (3426 cm?1) shifted to lower wavenumbers. The shift in these FT‐IR spectra suggests that the zeolite particles strongly interact with the sulfonic acid groups of PSSA chains. When the weight percent of zeolite 5A is above 7%, the proton conductivity at room temperature was reduced to 0.011 S/cm. The water uptake of the composite membranes decreased from 234 to 125% with an increase of the zeolite 5A weight percent to 10 wt%. The decrease in water uptake is likely a result of the decrease in the number of available water absorption sites because of the hydrogen bonding interactions between the zeolite particles and the graft copolymer matrix. This behavior is successfully investigated by scanning electron microscopy (SEM). The results of thermal gravimetric analysis (TGA) also showed that all the membranes were stable up to 300°C. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This paper describes the alignment of ferroelectric liquid crystal (FLC) structures formed between aligned polymer fibres, where the FLC smectic layers are determined by polarising microscopy and X-ray diffraction. The FLC/polymer composite films were formed from a nematic phase FLC/monomer solution using a photopolymerisation-induced phase separation method. It was found that bending of the FLC smectic layers was induced in both the film plane and the cross-sectional plane at the phase transition from smectic A to chiral smectic C of the FLC material. The light transmittance properties of the composite film between crossed polarizers was analysed by light propagation simulation in several optical anisotropic media, based on the evaluated smectic layer model.  相似文献   

18.
This paper describes the alignment of ferroelectric liquid crystal (FLC) structures formed between aligned polymer fibres, where the FLC smectic layers are determined by polarising microscopy and X-ray diffraction. The FLC/polymer composite films were formed from a nematic phase FLC/monomer solution using a photopolymerisation-induced phase separation method. It was found that bending of the FLC smectic layers was induced in both the film plane and the cross-sectional plane at the phase transition from smectic A to chiral smectic C of the FLC material. The light transmittance properties of the composite film between crossed polarizers was analysed by light propagation simulation in several optical anisotropic media, based on the evaluated smectic layer model.  相似文献   

19.
A SnO2/CdS nanocomposite based on the flowerlike clusters of SnO2 nanorods was prepared and characterized with x-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and EDX analysis. The SEM and TEM images show the nanocomposite is composed of CdS nanoparticles and flowerlike clusters of SnO2 nanorods. The UV–vis spectrum of the nanocomposite displays a new absorption band in the region of 350 to 530 nm, compared with that of the flowerlike clusters of SnO2 nanorods. The measurement of optoelectronic property indicates that the photoresponse of the composite is extended into the visible region and the incident photon-to-current conversion efficiency (IPCE) of the composite is up to 6.5 in the range of 400 to 440 nm. These phenomena ought to be ascribed to the special nanostructure of the SnO2/CdS composite obtained.  相似文献   

20.
A range of near-monodisperse, multimicrometer-sized polymer particles has been coated with ultrathin overlayers of polypyrrole-palladium (PPy-Pd) nanocomposite by chemical oxidative polymerization of pyrrole using PdCl(2) as an oxidant in aqueous media. Good control over the targeted PPy-Pd nanocomposite loading is achieved for 5.2 μm diameter polystyrene (PS) particles, and PS particles of up to 84 μm diameter can also be efficiently coated with the PPy-Pd nanocomposite. The seed polymer particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, surface/bulk chemical compositions, and conductivity. Laser diffraction studies of dilute aqueous suspensions indicate that the polymer particles disperse stably before and after nanocoating with the PPy-Pd nanocomposite. The Fourier transform infrared (FT-IR) spectrum of the PS particles coated with the PPy-Pd nanocomposite overlayer is dominated by the underlying particle, since this is the major component (>96% by mass). Thermogravimetric and elemental analysis indicated that PPy-Pd nanocomposite loadings were below 6 wt %. The conductivity of pressed pellets prepared with the nanocomposite-coated particles increased with a decrease of particle diameter because of higher PPy-Pd nanocomposite loading. "Flattened ball" morphologies were observed by scanning/transmission electron microscopy after extraction of the PS component from the composite particles, which confirmed a PS core and a PPy-Pd nanocomposite shell morphology. X-ray diffraction confirmed the production of elemental Pd and X-ray photoelectron spectroscopy studies indicated the existence of elemental Pd on the surface of the composite particles. Transmission electron microscopy confirmed that nanometer-sized Pd particles were distributed in the shell. Near-monodisperse poly(methyl methacrylate) particles with diameters ranging between 10 and 19 μm have been also successfully coated with PPy-Pd nanocomposite, and stable aqueous dispersions were obtained. The nanocomposite particles functioned as an efficient catalyst for the aerobic oxidative homocoupling reaction of 4-carboxyphenylboronic acid in aqueous media for the formation of carbon-carbon bonds. The composite particles sediment in a short time (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号