首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
纳米硅薄膜分形凝聚模型   总被引:5,自引:3,他引:5  
从分析纳米硅(nc-Si:H)薄膜生长过程的特点出发,提出与扩散限制凝聚(DLA)模型不同的nc-Si:H薄膜分形凝聚模型:扩散与反应限制凝聚(DRLA)模型.获得的结果与实验结果符合得很好.nc-Si:H薄膜是利用等离子体增强气相淀积方法制备的.文中讨论了nc-Si:H薄膜的结构特点与分形凝聚之间的关系.  相似文献   

2.
采用反应磁控溅射工艺通过改变N<,2气流量比在Si衬底上沉积300nm厚TiN薄膜.用原子力显微镜(AFM)观察薄膜表面形貌,并根据分形理论予以定量表征.结果表明:TiN薄膜的溅射模式与分形维数D<,f>值的演化存在相关性.当N<,2气流量比由O.0%增加至4.0%时,TiN薄膜的溅射方式属于金属模式,D<,f>保持不变;当N<,2气流量比继续增加至10.0%时,薄膜溅射方式转变为过渡模式,此时D<,f>急剧减小;而当N<,2气流量比超过10.0%以后,薄膜溅射模式改变为氮化物模式,相应的D<,f>轻微增加.  相似文献   

3.
用反应磁控溅射方法在Si基片上沉积TiN膜,用原子力显微镜(ARM)观察薄膜表面形貌.比较研究了尺码法、盒计数法、功率谱密度法与高度-高度相关函数法计算的表面形貌分形维数Df结果,并研究了TiN膜表面形貌的演化特征.结果表明,功率谱密度法与高度-高度相关函数法计算的Df值与AFM观测尺度不相关,具有较好的稳定性,随着膜厚h增加,薄膜分形维数Df先减小再增加,这是由生长初期基片表面影响与生长后期的晶粒长大所导致的.  相似文献   

4.
纳米硅薄膜结构特性研究   总被引:4,自引:0,他引:4  
在电容式耦合等离子体化学气相沉积系统中,使用高氢稀释硅烷为反应气体制备出了晶粒尺寸为2~10nm的纳米微晶相结构的硅薄膜,使用高分辨电子显微镜(HREM),X射线衍射谱(XRD),X射线光电子能谱(XPS)和红外光谱(IR)等结构分析手段检测了其结构特征.结果表明,纳米硅薄膜的晶格结构为畸变的金刚石结构.X射线衍射谱表明除了Si(111)的2θ=28.5°和Si(220)的2θ=47.3°处的衍射峰外,在2θ=32.5°处存在着一个强的异常峰.HREM结果表明存在新的Si结晶学结构与XRD异常峰相关联.  相似文献   

5.
纳米硅薄膜界面结构的微观特征   总被引:5,自引:1,他引:5  
对使用等离子体增强化学汽相沉积法(PECVD)制备的纳米硅薄膜(nc-Si:H),使用HREM及STM技术观测了其显微结构,给出大量的界面结构图象.首次获得有关晶粒及界面区中原子的分布情况.使我们认识到nc-Si:H膜中界面区内的硅原子仍然是具有短程有序性并不是完全无序的.  相似文献   

6.
纳米硅薄膜结构分析   总被引:7,自引:2,他引:7  
在常用的PECVD电容式耦合沉积系统中,使用高氢稀释硅烷为反应气氛,在r.f.+DC双重功率源激励下制备出具有纳米相结构的硅薄膜.使用HREM,Raman光散射,X射线衍射以及红外和紫外光谱分析手段广泛地检测了其结构特征.指出,纳米硅(nc-Si:H)薄膜由于具有一系列新的结构特征使它脱颖于熟知的 a-Si:H及 μc-Si:H范畴,从而显示出它自己的独特性能.  相似文献   

7.
在2×10-4 Pa真空下,采用XeCl准分子激光器(波长308 nm),调整激光单脉冲能量密度为3 J/cm2,交替烧蚀高纯单晶硅(Si)靶和铒(Er)靶,通过调整辐照两靶的激光脉冲个数比来控制掺Er浓度,分别在Si衬底和石英衬底上制备了掺Er非晶Si薄膜。在N2气保护下经高温热退火实现纳米晶化,退火时间为30 min。采用扫描电子显微镜(SEM)观察所得到的样品的表面形貌显示,铒掺杂影响着薄膜的表面形貌,与不掺Er情况相比,掺入适量的Er可以在较低的退火温度下得到晶粒尺寸分布更均匀的薄膜;拉曼谱的测量结果表明,在相同的退火温度下,Er的掺入有利于晶粒的长大,但同时降低了薄膜的晶化度,掺Er非晶Si薄膜要实现完全晶化需要更高的退火温度。  相似文献   

8.
用磁控溅射工艺在Si基片上沉积500nm厚Cu膜,并在不同温度下进行快速退火处理。用扫描电镜(SEM)与原子力显微镜(AFM)观察薄膜表面形貌,并根据分形理论予以定量表征。结果表明:当退火温度T在小于673K范围内增加时,分形维数Dr逐渐减小;而当T增加至773K时,Dr异常增加。本文根据表面扩散、晶粒长大、缺陷形成等机制对其进行了分析。  相似文献   

9.
纳米硅薄膜的电致发光和光致发光   总被引:6,自引:0,他引:6  
对用PECVD方法控制生长条件制备的纳米硅薄膜材料的发光性质进行了初步研究.在膜的纵向加直流偏压,暗场环境下可清楚地看到材料的电致发光现象.在同一套测量系统中分别测量了纳米硅材料的电致发光光谱和光致发光光谱,并用Lambda9紫外/可见/近红外分光光度计测量了样品的透射谱,从而得到样品的Tauc曲线和光能隙E  相似文献   

10.
纳米硅薄膜与纳米电子学   总被引:3,自引:0,他引:3  
林鸿溢 《微电子学》1999,29(6):385-389
纳米半导体硅薄膜是利用等离子体增强化学气相沉积(PECVD)方法制备的,制备可以很好地进行调节控制。纳米硅薄膜由两种组元:纳米尺度晶粒组元和晶粒间的界面组元,即晶态相和晶界相组成。纳米半导体硅薄膜对发展半导体器件,例如量子功能器件和薄膜敏感器件等,很有价值。  相似文献   

11.
采用磁控溅射方法在p—Si(111)衬底上淀积5nmPt膜,退火后形成PtSi薄膜,利用原子力显微镜和高分辨电子显微镜观察了PtSi薄膜的表面和界面特征。实验结果表明,工艺条件影响PtSi薄膜的微观组织结构和表面形貌,随着衬底温度增加,薄膜表面由柱晶状团簇变为扁平状团簇,薄膜显微结构由多层变为单层,衬底加热有利于形成界面清晰、结构完整、成分单一的PtSi薄膜。  相似文献   

12.
13.
本文综述了我们利用扫描隧道显微镜和低能电子衍射对锗硅表面结构和动态过程进行了系统化和比较性的研究。研究结果除了具有重要的基础意义外,对半导体异上延生长衬底选择以及量子线和量子点自组织生长模板的选择都有指导意义。  相似文献   

14.
何宇亮  施毅 《半导体学报》2003,24(5):192-197
使用PECVD薄膜沉积技术制成的具有新结构特征的纳米硅薄膜(nc—Si2H)拥有一系列物性,以纳米硅膜为母体研制成异质结二极管,发现它具有一系列优于单晶硅二极管的独特性能,探讨了使用纳米硅薄膜制造的其它硅器件的可能性,如肖特基器件、TFT晶体管等。  相似文献   

15.
采用磁控溅射方法在p-Si (111)衬底上淀积5nm Pt膜,退火后形成PtSi薄膜,利用原子力显微镜和高分辨电子显微镜观察了PtSi薄膜的表面和界面特征.实验结果表明,工艺条件影响PtSi薄膜的微观组织结构和表面形貌.随着衬底温度增加,薄膜表面由柱晶状团簇变为扁平状团簇,薄膜显微结构由多层变为单层.衬底加热有利于形成界面清晰、结构完整、成分单一的PtSi薄膜.  相似文献   

16.
采用磁控溅射方法在p-Si (111)衬底上淀积5nm Pt膜,退火后形成PtSi薄膜,利用原子力显微镜和高分辨电子显微镜观察了PtSi薄膜的表面和界面特征.实验结果表明,工艺条件影响PtSi薄膜的微观组织结构和表面形貌.随着衬底温度增加,薄膜表面由柱晶状团簇变为扁平状团簇,薄膜显微结构由多层变为单层.衬底加热有利于形成界面清晰、结构完整、成分单一的PtSi薄膜.  相似文献   

17.
本工作采用HFCVD方法在Si、Mo衬底上生长出不同晶粒形貌的多晶金刚石薄膜,研究了生长条件(衬底温度、碳源浓度、反应压强)对金刚石薄膜晶粒形貌的影响。结果表明,在HFCVD方法中,金刚石薄膜晶粒形貌对生长条件十分敏感,生长条件的变化会导致不同形貌晶粒的生长。  相似文献   

18.
采用离子源辅助电子束蒸发的方法,制备了以Si为基底,以TiO2为缓冲层的ZnO薄膜。通过进一步保温处理,在不同温度条件下进行退火处理得到了不同的样品薄膜,用于表面形貌分析和光散射特性实验研究。结果表明,退火温度对样品表面粗糙度、晶粒大小、分形维数等参数具有显著的影响,通过表面形貌分析有助于更好地理解薄膜晶粒生长机制和改进薄膜制备工艺;不同薄膜样品的反射光强度和偏振度对不同偏振光具有不同的角度响应特征,且与薄膜表面统计特性具有一定的关联性,薄膜的光散射特性研究对研究弱散射随机粗糙表面的退偏作用具有一定的参考价值。  相似文献   

19.
使用纳米硅薄膜技术改进现有硅器件的性能   总被引:1,自引:0,他引:1  
何宇亮  施毅 《半导体学报》2003,24(z1):192-197
使用PECVD薄膜沉积技术制成的具有新结构特征的纳米硅薄膜(nc-Si∶H)拥有一系列物性.以纳米硅膜为母体研制成异质结二极管,发现它具有一系列优于单晶硅二极管的独特性能.探讨了使用纳米硅薄膜制造的其它硅器件的可能性,如肖特基器件、TFT晶体管等.  相似文献   

20.
使用纳米硅薄膜技术改进现有硅器件的性能   总被引:1,自引:0,他引:1  
使用PECVD薄膜沉积技术制成的具有新结构特征的纳米硅薄膜(nc-Si∶H)拥有一系列物性.以纳米硅膜为母体研制成异质结二极管,发现它具有一系列优于单晶硅二极管的独特性能.探讨了使用纳米硅薄膜制造的其它硅器件的可能性,如肖特基器件、TFT晶体管等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号