首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ligands tris[3-(2-pyridyl)pyrazol-1-yl]hydroborate (L1, potentially hexadentate) and bis[3-(2-pyridyl)pyrazol-1-yl]dihydroborate (L2, potentially tetradentate) have been used to prepare ternary lanthanide complexes in which the remaining ligands are dibenzoylmethane anions (dbm). [Eu(L1)(dbm)2] is eight-coordinate, with L1 acting only as a tetradentate chelate (with one potentially bidentate arm pendant) and two bidentate dbm ligands. [Nd(L1)(dbm)2] was also prepared but on recrystallization some of it rearranged to [Nd(L1)2][Nd(dbm)4], which contains a twelve-coordinate [Nd(L1)2]+ cation (two interleaved hexadentate podand ligands) and the eight-coordinate anion [Nd(dbm)4]- which, uniquely amongst eight-coordinate complexes having four diketonate ligands, has a square prismatic structure with near-perfect O8 cubic coordination. Formation of this sterically unfavourable geometry is assumed to arise from favourable packing with the pseudo-spherical cation. The isostructural series of complexes [Ln(L2)(dbm)2](Ln = Pr, Nd, Eu, Gd, Tb, Er, Yb) was also prepared and all members structurally characterised; again the metal ions are eight-coordinate, from one tetradentate ligand L2 and two bidentate dbm ligands. Photophysical studies on the complexes with Ln = Pr, Nd, Er, and Yb were carried out; all show the near-IR luminescence characteristic of these metal ions, with longer lifetimes in CD3OD than in CH3OH. For [Yb(L2)(dbm)2], two species with different luminescence lifetimes were observed in CH3OH solution, corresponding to species with zero or one coordinated solvent molecules, in slow exchange on the luminescence timescale. For [Nd(L2)(dbm)2] a single average solvation number of 0.7 was observed in MeOH. For [Pr(L2)(dbm)2] a range of emission lines in the visible and NIR regions was detected; time-resolved measurements show a particularly high susceptibility to quenching by solvent CH and OH oscillators.  相似文献   

2.
IntroductionThelow-temperatureprocessingofthesol-gelmaterialmakesitpossibletoentraporganicspecieseasilywithinarigidglassmatri...  相似文献   

3.
The luminescence properties of tris(1,2-bipyridine)ruthenium(II) (Ru(bpy)(3)(2+)), included in different organically modified silicate gel matrixes were investigated. Spin and dip-coated thin films were prepared from methyltrimethoxysilane (MTMOS) and methyltriethoxysilane (MTEOS). A blue shift in the emission spectrum of the MLCT excited state of Ru(bpy)(3)(2+) with respect to the aqueous solution was observed in all the films, practically independent of the reaction pH used to prepare the "sol," silane-derived precursor, and procedure used (dip-coating or spin-coating) to obtain the film. A bimodal distribution of probe sites in the films was obtained from modeling of the emission decays by a double exponential and from application of the exponential series method. The parameters of the decay components depended principally on the thermal treatment used in the processing of the films. The lifetimes decreased with the increase in the drying temperature of the films; at the same time, the emission spectra showed a red shift and the luminescence efficiency decreased. A luminescence quenching of the ruthenium complex in the films by 4-bromo-2,6-dimethylphenol and 2,6-dimethylphenol in aerated aqueous solution at pH 12 in contact with the film was also observed. The quenching plots obtained from luminescence intensities or luminescence intensity decay measurements showed a downward curvature. These plots could be fitted satisfactorily by a sum of two Stern-Volmer terms with quenching constants K(SV1) and K(SV2) associated with two different binding sites of the ruthenium complex. This result is indicative of the matrix microheterogeneity in the films and is fully consistent with the biexponential nature of the luminescence intensity decay profiles. The Stern-Volmer parameter values for both sites in the films suggest that only a low percentage of the probe is accessible to the quencher and its respective constant K(SV1) is lower than in water.  相似文献   

4.
The luminescence decay and spectral behavior of ruthenium(II)-tris-1,2-bipyridine dichloride dissolved in different organically modified silicate gel matrixes were investigated. Dip-coated thin films were synthesized from tetraethoxysilane (TEOS), methyltriethoxysilane (MTEOS), ethyltriethoxysilane (ETEOS), and methyl- trimethoxysilane (MTMOS). A blue shift in the ruthenium complex emission spectrum with respect to the aqueous solution was observed for all the films on the sol to gel conversion. This spectral shift was slightly dependent on the precursor used to obtain the films and independent of the reaction pH to prepare the "sol". In the data treatment of the time-resolved luminescence measurements, it was assumed that the distribution of the luminophore in the films was nonhomogeneous. The analysis of the luminescence decay profiles was based on a multisite model. All decay curves are best described by a double-exponential model. The parameters of the decay components depended principally on the thermal treatment used in the processing of the films. The lifetimes decreased and the emission espectra showed a red shift with the increase in the drying temperature. A luminescence quenching of the ruthenium complex in the films by dissolved oxygen in aqueous solution was also observed. The quenching rate constant obtained from the preexponential amplitude-weighted mean lifetimes (tau(M)) was in the order of 10(9) M(-1) s(-1). When a phenolic derivative was used as quencher the process rate was greatly reduced compared to the quenching in water. It would seem that the metallic complex sequestered within the film is placed either into a higher microviscosity microenvironment or in a location which the phenolic quencher cannot access. In both cases, the quenching plot based on tau(o)(M)/tau(M) could be fitted satisfactorily by a sum of two terms of Stern-Volmer. This fact is indicative of the matrix microheterogeneity for the films and is fully consistent with the biexponential nature of the luminescence intensity decay profiles.  相似文献   

5.
Novel nanometer-sized ScAlMgO4:Eu3+ phosphors were successfully synthesized by the citric acid complexation method.The mean particle size of the obtained powders was within the range of 100~150 nm according to the SEM patterns.In ScAlMgO4:Eu3+ showed strong characteristic red emission,of which the maximum emission peak was located at 629 nm for ultraviolet(UV) excitation.The dependence of photoluminescence intensity on Eu3+ concentration was also studied in detail,and the emission intensity of Sc1-xEuxAlMgO4 was about 10% at optimized Eu3+ concentration.Furthermore,the luminescence decay measurements showed that the lifetimes of Eu3+ were in the range of millisecond.The obtained ScAlMgO4:Eu3+ phosphors with nanometer size and excellent luminescence efficiency would be potential red phosphors in plasma display panels.  相似文献   

6.
Eu(2+)-doped monophosphates NaSrPO(4) and KBaPO(4) with the β-K(2)SO(4) structure were synthesized using the conventional high temperature solid state reaction. The X-ray powder diffraction, photoluminescence excitation, and emission spectra and decay curves were measured. The phosphors can be efficiently excited by UV-visible light from 220 to 430 nm to realize emission in the visible range. The natures of the Eu(2+) emission, e.g., the chromaticity coordinates, the Stokes shifts, and the luminescence absolute quantum efficiencies, were reported. The luminescence quenching temperatures and the thermal activation energies for NaSrPO(4):Eu(2+) and KBaPO(4):Eu(2+) were obtained from the temperature dependent (10-435 K) luminescence intensities and decay curves. KBaPO(4):Eu(2+) presents only one emission center; however, Eu(2+) ions have a "disordered environment" in NaSrPO(4) lattices. The relationship between the luminescence thermal stabilities and the crystal structures was discussed. The crystallographic occupations of rare earth ions doped in these hosts were analyzed by the site-selective emission spectra and the excitation spectra of Eu(3+) ions in the (7)F(0)→(5)D(0) transitions using a pulsed, tunable, and narrow-band dye laser. In KBaPO(4), the Eu(3+) ions could be distributed in the host with a high "ordered state" in only one site in the lattices. However, the multiple site structure of Eu(3+) ions with highly disordered distributions in NaSrPO(4) lattices was suggested.  相似文献   

7.
含稀土铕配合物三维有序大孔材料的制备及其荧光性能   总被引:2,自引:0,他引:2  
采用物理吸附的方法将稀土配合物嵌入三维有序大孔聚合物材料的孔内,组装了发光性能良好的含邻菲罗林-铕配合物的三维有序大孔聚合物材料(3DOM/Eu(Phen)2).并通过扫描电镜、红外光谱和荧光光谱对3DOM/Eu(Phen)2组装体进行了表征.结果表明:组装体的结构保持了三维有序大孔材料的结构特征,在紫外灯的照射下,发出稀土离子的特征谱线,与纯配合物相比,其激发光谱发生蓝移,荧光寿命延长.  相似文献   

8.
以稀土氧化物为原料,用溶胶-凝胶法制备前驱液,加入适量的聚乙烯醇做成膜物质,用浸渍拉提法在石英玻璃表面上得到均匀的薄膜,然后经过适当的干燥和热处理得到Y2O3∶Eu3+发光薄膜.讨论了Eu3+的掺杂浓度和热处理温度对薄膜发光性能的影响.试验表明:Eu3+的最佳掺杂浓度为8%(摩尔分数),薄膜的发光性能随热处理温度提高而增强,当热处理温度达到700℃后,薄膜的发光性能基本上稳定.同时用原子力显微镜和X射线衍射分析了薄膜的表面形貌和结构.  相似文献   

9.
Coordination states of Eu(III) in anion exchange resin (AG 1X8) systems with LiCl-H2O/alcohol mixed media were determined from the luminescence lifetimes and the emission spectra of Eu(III). The sorption equilibrium of Eu(III) was discussed on the basis of the correlation between the distribution coefficients and the coordination states in the solution and resin phases. The sorption of Eu(III) was mainly caused by the formation of an anionic Eu(III)-chloro complex in the resin phase, which was enhanced by the decrease of 'free' water activity due to the addition of alcohol. The effect of ethanol added was larger than that of methanol.  相似文献   

10.
The synthesis of the Eu(III) complex 1.Eu and photophysical studies of this complex in solution are described. In water, the Eu(III) luminescence was ‘switched on’ in the presence of H+, with large enhancements in the Eu(III) luminescence. The complex was then incorporated into poly[methylmethacrylate-co-2-(hydroxyethylmethacrylate)]-based hydrogels and the luminescent properties of the resulting polymeric films were investigated using confocal laser-scanning microscopy as well as using steady-state luminescence. The luminescence was shown to be ‘switched on’ in the soft material after adjusting the pH of the solution in which the 1.Eu-incorporated film was immersed from alkaline to acid.  相似文献   

11.
A new water-soluble Pybox ligand, 1, has been synthesized and found to crystallize in the monoclinic P2(1)/n space group with unit cell parameters a = 6.0936(1) ?, b = 20.5265(4) ?, c = 12.0548(2) ?, and β = 90.614(1)°. In the crystal, a water molecule is bound through hydrogen-bonding interactions to the nitrogen atoms of the oxazoline rings. This ligand was used to complex a variety of lanthanide ions, opening up new avenues for luminescence and catalysis in aqueous environment. These complexes are highly luminescent in aqueous solutions, in acetonitrile, and in the solid state. Aqueous quantum yields are high at 30.4% for Eu(III), 26.4% for Tb(III), 0.32% for Yb(III), and 0.11% for Nd(III). Er(III) did not luminesce in water, but an emission efficiency of 0.20% could be measured in D(2)O. Aqueous emission lifetimes were also determined for the visible emitting lanthanide ions and are 1.61 ms for Eu(III) and 1.78 ms for Tb(III). Comparing emission lifetimes in deuterated and nondeuterated water indicates that no water molecules are coordinated to the metal ion. Speciation studies show that three species form successively in solution and the log β values are 5.3, 9.6, and 13.8 for Eu(III) and 5.3, 9.2, and 12.7 for Tb(III) for 1:1, 2:1, and 3:1 ligand to metal ratios, respectively.  相似文献   

12.
The sensitization of Eu(III) and Tb(III) by ethylenediaminetetraaceticacid (EDTA)-derivatized tryptophan (Trp), 7-azatryptophan (7AW) and 5-hydroxytryptophan (5HW) has been examined. These Trp analogs were utilized in the present study because they can be incorporated into proteins in place of native Trp residues and because they absorb strongly beyond 305 nm (where Trp absorbance goes to zero), allowing selective excitation of such species in the presence of other Trp-containing proteins. All three indole derivatives were able to sensitize Tb(III) luminescence, with the relative sensitization being in the order Trp > 5HW > 7AW. On the other hand, only the 7AW-EDTA complex was able to sensitize Eu(III) luminescence, likely owing to a better spectral overlap between 7AW emission and Eu(III) absorbance. The sensitized emission of Tb(III) and Eu(II) displayed the expected long emission lifetimes at 545 nm [for Tb(III)] and 617 nm [for Eu(III)], indicating that long-lifetime lanthanide emission could be produced using nonnatural amino-acid donors. Thus, 7AW- and 5HW-sensitized lanthanide emissions should prove to be useful in biophysical studies, such as the use of fluorescence energy transfer to probe biomolecular interactions in vivo.  相似文献   

13.
The work is devoted to luminescent properties of trivalent lanthanide complexes dispersed in thermoplastic host matrices. Polyethylene films and polypropylene‐rods, both doped with these complexes, were manufactured using an extrusion technique. Two kinds of dopants were used: Eu(III)‐thenoyltrifluoroacetone‐1,10‐phenanthroline complex (1) and Eu(III)‐La(III)‐1,10‐phenanthroline complex (2). Absorption, excitation, emission spectra and lifetime of luminescence were studied. The impact of the polymer matrix on the emission spectra was investigated. Emission spectra of the films were studied at room and helium temperatures. Time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) surface mapping showed that in the Eu(III)‐La(III) complex europium forms islands (clusters) with a dimension of 1 µm, whereas lanthanum was dispersed more uniformly in the polymer matrix. Dependence of emission intensity on the excitation was determined. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Poly(lactic acid) (PLA)-supported dibenzoylmethane (dbm) and corresponding metal complexes have potential applications as biomaterials and catalysts. Using hydroxyl-functionalized dbm (i.e., dbmOH) as the initiator and Sn(oct)2 as the catalyst, lactide ring-opening polymerizations were unexpectedly slow (6 h), and PDIs broadened when molecular weights >10 000 were targeted. Because interactions between the dbm ligand and Sn(oct)2 may be responsible for the diminished catalyst activity and molecular weight control, iron(III) was employed as a protecting group to form Fe(dbmOH)3. Shorter reaction times (10 min) were noted with this trifunctional metalloinitiator and Sn(oct)2, and higher molecular weights were achievable. Moreover, it was discovered that Fe(dbmOH)3 serves not only as an initiator but also as a catalyst and activating group for the polymerization. Even without the tin catalyst, iron-centered polymers with low PDIs (<1.1) were obtained within 10 min ( approximately 70% monomer conversion). The resulting Fe(dbmPLA)3 stars were demetalated by acid treatment to generate dbmPLA for subsequent coordination to other metals. To explore the scope of iron beta-diketonate complexes as catalysts, additional studies were performed with dbmOH and benzyl alcohol initiators using either iron tris(dbm) or iron tris(acac) (acac = acetylacetonate) as the catalyst. Here too, PLA products were obtained, and the iron catalysts were readily separated by treatment with aqueous HCl.  相似文献   

15.
Herein, novel host–guest films produced by coarse vacuum cosublimation of the parylene C dimer and Eu(tta)3phen are prepared and studied. Eu(tta)3phen sublimation at different temperatures allows films with different concentrations of the Eu complex to be obtained. The films are characterized by Rutherford backscattering spectrometry (RBS), FTIR spectroscopy, X‐ray diffraction (XRD), atomic force microscopy (AFM), and UV/Vis absorption and emission spectroscopy. RBS, FTIR, and XRD reveal the incorporation of Eu(tta)3phen into the parylene matrix. AFM evidences the very flat film surface, which is particularly advantageous for optical applications. UV/Vis absorption and emission analyses confirm that the optical properties of Eu(tta)3phen are preserved in the deposited films. Fluorescence measurements evidence the occurrence of an energy‐transfer process between parylene and Eu(tta)3phen, and this results in an increase in the light emitted by the Eu complex that is as much as five times higher than that emitted by Eu(tta)3phen alone.  相似文献   

16.
The emission properties, including luminescence lifetimes, of the lanthanide complexes Ln(Tf(2)N)(3) (Tf(2)N = bis(trifluoromethanesulfonyl)amide); Ln(3+) = Eu(3+), Tm(3+), Dy(3+), Sm(3+), Pr(3+), Nd(3+), Er(3+)) in the ionic liquid bmpyr Tf(2)N (bmpyr = 1-n-butyl-1-methylpyrrolidinium) are presented. The luminescence quantum efficiencies, η, and radiative lifetimes, τ(R), are determined for Eu(3+)((5)D(0)), Tm(3+)((1)D(2)), Dy(3+)((4)F(9/2)), Sm(3+)((4)G(5/2)), and Pr(3+)((3)P(0)) emission. The luminescence lifetimes in these systems are remarkably long compared to values typically reported for Ln(3+) complexes in solution, reflecting weak vibrational quenching. The 1.5 μm emission corresponding to the Er(3+) ((4)I(13/2)→(4)I(15/2)) transition, for example, exhibits a lifetime of 77 μs. The multiphonon relaxation rate constants are determined for 10 different Ln(3+) emitting states, and the trend in multiphonon relaxation is analyzed in terms of the energy gap law. The energy gap law does describe the general trend in multiphonon relaxation, but deviations from the trend are much larger than those normally observed for crystal systems. The parameters determined from the energy gap law analysis are consistent with those reported for crystalline hosts. Because Ln(3+) emission is known to be particularly sensitive to quenching by water in bmpyr Tf(2)N, the binding properties of water to Eu(3+) in solutions of Eu(Tf(2)N)(3) in bmpyr Tf(2)N have been quantified. It is observed that water introduced into these systems binds quantitatively to Ln(3+). It is demonstrated that Eu(Tf(2)N)(3) can be used as a reasonable internal standard, both for monitoring the dryness of the solutions and for estimating the quantum efficiencies and radiative lifetimes for visible-emitting [Ln(Tf(2)N)(x)](3-x) complexes in bmpyr Tf(2)N.  相似文献   

17.
The electronic, vibrational, and excited-state properties of hexanuclear rhenium(III) chalcogenide clusters based on the [Re(6)(mu(3)-Q)(8)](2+) (Q = S, Se) core have been investigated by spectroscopic and theoretical methods. Ultraviolet or visible excitation of [Re(6)Q(8)](2+) clusters produces luminescence with ranges in maxima of 12 500-15 100 cm(-)(1), emission quantum yields of 1-24%, and emission lifetimes of 2.6-22.4 microseconds. Nonradiative decay rate constants and the luminescence maxima follow the trend predicted by the energy gap law (EGL). Examination of 24 clusters in solution and 14 in the solid phase establish that exocluster ligands engender the observed EGL behavior; clusters with oxygen- or nitrogen-based apical ligands achieve maximal quantum yields and the longest lifetimes. The excited-state decay mechanism was investigated by applying nonradiative decay models to temperature-dependent emission experiments. Solid-state Raman spectra were recorded to identify vibrational contributions to excited-state deactivation; spectral assignments were enabled by normal coordinate analysis afforded from Hartree-Fock and DFT calculations. Excited-state decay is interpreted with a model where normal modes largely centered on the [Re(6)Q(8)](2+) core induce nonradiative relaxation. Hartree-Fock and DFT calculations of the electronic structure of the hexarhenium family of compounds support such a model. These experimental and theoretical studies of [Re(6)Q(8)](2+) luminescence provide a framework for elaborating a variety of luminescence-based applications of the largest series of isoelectronic clusters yet discovered.  相似文献   

18.
Increased interest in the emission properties of lanthanide(III) (Eu and Tb) complexes containing ultraviolet and visible sensitizers is being driven by the desire to produce efficient and selective luminescent probes of biological structure. Of special interest are cryptates and other macrocyclic chelating ligands that efficiently encapsulate the lanthanide ions. These species also form relatively stable systems and in some cases are well protected from penetration of the first coordination sphere by solvent molecules and counterions. This work describes the X-ray structure and various spectroscopic measurements on a europium cryptate containing 3,3'-biisoquinoline-2,2'-dioxide (biqO2). This cryptate has been previously recognized for special stability and luminescence efficiency. The compound, (Eu:biqO2.2.2)(CF3SO3)3.CH3CN.H2O, forms rhombic crystals with the space group Pbca. Absorption, emission, and excitation spectra at 293, 77, and 4 K as well as luminescence decay time measurements are used to characterize the solid state and solutions. The ligand-to-metal energy-transfer mechanism and thermally activated back-energy-transfer processes are analyzed and compared to previously published results on related Eu(III) cryptate systems. Preliminary results on the use of high liquid pressure to perturb ligand singlet and triplet states and, as a consequence, probe the ligand-metal orbital interactions are also presented.  相似文献   

19.
Reactions of tripodal ligand 1,3,5-tris(imidazole-1-ylmethyl)-2,4,6-trimethylbenzene (L) with lanthanide metal salts and triethyl orthoformate led to the formation of six bowl-like dinuclear compounds [Ln2(L)(HL)(NO3)6(HCOO)].3CH3OH (Ln = Gd 1, Tb 2, Dy 3, Er 4, Yb 5, and Eu 6). The single-crystal X-ray diffraction analysis revealed that six complexes are isomorphous and isostructural and that the dinuclear molecules are further connected by hydrogen bonds and pi-pi interactions, resulting in 3D channel-like structures. The luminescence properties have been studied, and the results showed that the Tb(III) (2) and Eu(III) (6) complexes exhibited sensitized luminescence in the visible region and their luminescence lifetimes in powder and DMSO-d6 solution are in the range of milliseconds. The Yb(III) complex (5) emits typical near-infrared luminescence in DMSO-d6 solution. Variable-temperature magnetic susceptibility measurements of 1-6 showed that complex 1 (Gd) is nearly a paramagnet and complexes 2 (Tb), 3 (Dy), and 4 (Er) show the ferromagnetic coupling between magnetic centers, whereas the depopulation of the Stark levels in complexes 5 (Yb) and 6 (Eu) leads to a continuous decrease in (chi M)T when the sample is cooled from 300 to 1.8 K.  相似文献   

20.
A mononuclear of [Eu(NO3)(Pic)(H2O)2(EO3)](Pic)·(0.73)H2O complex, where EO3=trietraethylene glycol and Pic=picrate anion, shows a red emission when used as an active layer in a single layer of ITO/EO3-Eu-Pic/Al configuration. The crystal structure of the complex consists of [Eu(NO3)(Pic)(H2O)2(EO3)]+ cation and [Pic]- anion. The Eu(III) ion is coordinated to the 10 oxygen atoms from one EO3 ligand, one Pic anion, one nitrate anion, and two water molecules. The complex is crystallized in triclinic with space group P-1. The hybrids in thin films I and II were prepared in the respective order solution concentrations of 15 and 20 mg/mL the emissive center. Comparing the photoluminescence (PL) and electroluminescence (EL) spectra, we can find that all emissions come from the characteristic transitions of the Eu(III) ion. The EL spectra of both thin films showed the occurrence of the most intense red-light emission around at 612 nm. Comparison of organic light-emitting device (OLED) current intensity characteristics as a function of voltage (I-V) show that the thin film I is better than those found for the thin film II. The thickness of the emitting layer is an important factor to control the current-voltage curve. The sharp and intense emission of the complex at low voltage indicates that the complex is a suitable and promising candidate for red-emitting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号