首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nickel oxide (NiO) nanotubes for supercapacitors were synthesized by chemically depositing nickel hydroxide in anodic aluminum oxide templates and thermally annealing at 360 °C. The synthesized nanotubes have been characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The capacitive behavior of the NiO nanotubes was investigated by cyclic voltammetry, galvanostatic charge–discharge experiment, and electrochemical impedance spectroscopy in 6 M KOH. The electrochemical data demonstrate that the NiO nanotubes display good capacitive behavior with a specific capacitance of 266 F g−1 at a current density of 0.1 A g−1 and excellent specific capacitance retention of ca. 93% after 1,000 continuous charge–discharge cycles, indicating that the NiO nanotubes can become promising electroactive materials for supercapacitor.  相似文献   

2.
The thermal behavior of the yttria-stabilized zirconia (YSZ) and nickel oxide (YSZ–NiO) composite mixtures with the addition of graphite, multiwall carbon nanotubes and functionalized multiwall carbon nanotubes was studied. The YSZ–NiO composite is the precursor of the YSZ–Ni anode of solid oxide fuel cells. The anode exhibits a porous structure, which is usually obtained by the addition of carbon containing pore formers. Thermal analysis and X-ray diffraction evidenced that the properties of carbonaceous materials (C) and atmosphere have a strong influence on the thermal evolution of the reactions taking place upon heating the anode precursor. The dependence of both the carbon content and the chemical nature of the ceramic matrix on the thermal behavior of the composite were investigated. The discussed results evidenced important features for optimized processing of the anode.  相似文献   

3.
In recent years, there is an increasing interest in the fabrication of inorganic–organic materials considering the remarkable change and improvement in properties. In this investigation, nanosized nickel oxide (NiO) particles were first prepared by calcination of nickel hydroxide precursor obtained by a simple liquid‐phase process. Mixed phases of NiO and nickel hydroxide were present as the calcination temperature was lower than 250°C. Non‐stoichiometric NiO was formed between 250°C and 350°C, and a pure NiO was obtained as the temperature reached 500°C. The surface characteristics of NiO particles were evaluated by measuring the adsorption behavior of anionic and cationic surfactants and some biomolecules. NiO/poly(methyl methacrylate) composite particles were then prepared using variable NiO/methyl methacrylate (MMA) ratio by seeded emulsion polymerization. The efficiency of NiO incorporation in the composite increased as the MMA content was increased in the recipe. The composite particles were colloidally stable, and the obtained particles were characterized by Fourier transform infrared, scanning electron microscopy, X‐ray diffraction, and X‐ray photoelectron spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
超细氢氧化亚镍的溶胶凝胶法制备及其准电容特性   总被引:4,自引:0,他引:4  
以聚乙二醇为抑制剂,采用溶胶凝胶法制备了粒径小于200 nm且具有链珠状特殊形态的超细氢氧化亚镍电极材料.伏安特性测试和电化学阻抗测试表明在氢氧化亚镍中掺加适量碳纳米管可以显著改善电极材料的容量特性和阻抗特性,其中碳纳米管质量分数为20%的复合电极其比电容量可以达到320 F&;#8226;g-1.采用复合电极作为正极,活性炭电极作为负极组成的复合型电化学电容器最大工作电压可以达到1.6 V,具有良好的容量特性和大电流放电特性.恒流充放电测试证明复合型电化学电容器具有高能量密度及高功率放电特性,电容器的峰值功率密度为8.6 W&;#8226;g-1.当以0.88 W&;#8226;g-1功率放电时,电容器能量密度可达20.11 W&;#8226;h&;#8226;kg-1, 当采用3.46 W&;#8226;g-1的高功率进行放电时,复合型电容器的能量密度仍然能够达到11.11 W&;#8226;h&;#8226;kg-1.  相似文献   

5.
Polyaniline (PANI)/carbon nanotubes (CNTs) composite electrode material was prepared by in situ chemical polymerization. The structure and morphology of PANI/CNTs composite are characterized by Fourier infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. It has been found that a flocculent PANI was uniformly deposited on the surface of CNTs. The supercapacitive behaviors of the PANI/CNTs composite materials are investigated with cyclic voltammetry, galvanostatic charge/discharge, impedance, and cycle life measurements. The results show that the PANI/CNTs composite electrodes have higher specific capacitances than CNT electrodes and better stability than the conducting polymers. The capacitance of PANI/CNTs composite electrode is as high as 837.6 F g−1 measured by cyclic voltammetry at 1 mV s−1. Besides, the capacitance retention of coin supercapacitors remained 68.0% after 3,000 cycles.  相似文献   

6.
A novel type of composite electrode based on multiwalled carbon nanotubes coated with nano nickel oxide particles has been used in supercapacitors. Nickel oxide cathodically deposited from Ni(NO3)2 solution with carbon nanotubes as the matrix exhibited large pseudocapacitance of 25F/g in 6 mol/L KOH. The morphology of composites was examined by scanning electron microscope (SEM). To characterize the CNTs/nickel oxide composite electrode, a charge discharge cycling test for measuring specific capacitance, cyclic voltammetry, and ac impedance test is executed. The nickel oxide composite exhibiting excellent pseudocapacitive behavior(i.e.high reversibility, high specific capacitance, and low self discharge rate) has been demonstrated to be a potential candidate for the application of electrochemical supercapacitors.  相似文献   

7.
Supercapacitors have been considered as one of the main energy storage devices. Recently, electrospun nanofibers have served as promising supercapacitor electrodes because of their high surface area, high porosity, flexibility, and resistance to aggregation. Here, we investigate the effects of electrospinning parameters and nickel precursors on the nanostructure of electrospun nickel oxide (NiO), as well as on their electrochemical performance as supercapacitor electrodes. In contrast to the case of using nickel nitrate, increasing the nickel acetate molar concentration maintains the flexible fibrous sheet morphology of the as-spun sample during the polycondensation and calcination of NiO. As a result, our flexible electrode of NiO nanofibers derived from nickel acetate (NiO-A) exhibits much better electrochemical performance values than that of nickel nitrate-derived NiO. To further improve the electrochemical storage performance, we combined NiO-A nanofibers with single-walled carbon nanotubes (CNTs) as a hybrid electrode. In both half-cell and full-cell configurations, the hybrid electrode displayed a higher and steadier areal capacitance than the NiO-A nanofibers because of the synergetic effect between the NiO-A nanofibers and CNTs. Altogether, this work demonstrates the potency of the hybrid electrodes combined with the electrospun NiO-A nanofibers and CNTs for supercapacitor applications.  相似文献   

8.
Encapsulation of nickel oxide (NiO) particles is of great interest to the researchers as such modification produces remarkable improvement in properties and versatility in application potential. In this investigation, nanosized NiO particles were first prepared by calcination of nickel hydroxide precursor obtained using a simple liquid‐phase process. The produced NiO particles were stabilized with oleic acid and then treated with tetraethylorthosilicate to produce NiO/SiO2 composite seed particles. Finally tri‐layered inorganic/organic composite particles were prepared by seeded copolymerization of styrene and 2‐hydroxyethyl methacrylate (HEMA) in the presence of NiO/SiO2 composite seed particles. The produced composite particles named as NiO/SiO2/P(S‐HEMA) were colloidally stable, and the obtained particles were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy and thermogravimetric analyses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, porous NiO microspheres interconnected by carbon nanotubes (NiO/CNTs) were successfully fabricated by the pyrolysis of nickel metal-organic framework precursors with CNTs and evaluated as anode materials for lithium-ion batteries (LIBs). The structures, morphologies, and electrochemical performances of the samples were characterized by X-ray diffraction, N2 adsorption-desorption, field emission scanning electron microscopy, cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy, respectively. The results show that the introduction of CNTs can improve the lithium-ion storage performance of NiO/CNT composites. Especially, NiO/CNTs-10 exhibits the highest reversible capacity of 812 mAh g?1 at 100 mA g?1 after 100 cycles. Even cycled at 2 A g?1, it still maintains a stable capacity of 502 mAh g?1 after 300 cycles. The excellent electrochemical performance of NiO/CNT composites should be attributed to the formation of 3D conductive network structure with porous NiO microspheres linked by CNTs, which benefits the electron transfer ability and the buffering of the volume expansion during the cycling process.  相似文献   

10.
Electrically conducting super-macroporous carbon nanotube/polymer cryogel nanocomposites were fabricated by a novel approach based on deposition of carbon nanotubes (CNTs) onto the inner surface of pre-formed cryogels assisted by cryogenic treatment. Stable aqueous dispersions of multi-walled and single-walled carbon nanotubes were firstly obtained by non-covalent modification of pristine nanotubes with either pyrene containing polydimethylacrylamide or poly(ethylene oxide)26-b-poly(propylene oxide)40-b-poly(ethylene oxide)26 copolymers and, then, exploited for the preparation of nanocomposites. The mechanical and electrical properties of nanocomposite materials were measured and compared to similar materials prepared by established method. The novel approach provided super-macroporous nanocomposites with high electrical conductivity (>10?2 S/m) at much lower nanotube content (0.12 wt.%).  相似文献   

11.
This paper describes the use of aluminum and zinc as anodic materials for a battery employing nickel (II) oxide (NiO) as cathode. Comparison of both materials resulted in the development of a compact, cost effective, and easy to use primary NiO/Al battery employing an alkaline electrolyte. The system features electrodes composed of powder forms of the active materials on modified paper substrates that are contained in a simple multilayer design utilizing thin laminated plastic materials to provide structure and flexibility to the battery as well as a paper separator. Various concentrations of potassium hydroxide (KOH) electrolyte were examined and maximum performance was observed at 6 M KOH. A maximum current density and power density of 1.94 mA/cm2 and 1 mW/cm2, respectively was achieved. This user-friendly device was able to produce a maximum capacity of 2.33 mAh/g when 2 mA/g was applied. This work demonstrates the viability of a paper-based battery featuring powder electrodes as a possible power source for microelectronic devices.  相似文献   

12.
刘建勋  姜炜  王作山  李凤生 《化学学报》2007,65(23):2725-2730
采用射流进样催化裂解法制备了直形碳纳米管(CNTs)、分叉碳纳米管, 分别以二者为载体, 用化学沉积法制备了负载纳米NiO的复合粒子, 并研究了纳米NiO和CNTs的单一纳米粒子、简单混合物、复合物对高氯酸铵(AP)热分解的催化性能, 对催化效果的差异作了初步探讨. 结果表明: NiO/直形CNTs和NiO/分叉CNTs复合粒子比表面积大, 表面负载层的纳米NiO结晶好、粒子均匀、粒径小、分散性好. 复合粒子对AP热分解的催化效果比单一纳米粒子和简单混合物好, 其中NiO/分叉CNTs复合粒子催化效果最好, 使AP高温分解峰温降低了94.6 ℃, 使表观分解热增加了819 J/g. CNTs的载体支撑作用, 可防止NiO纳米粒子的团聚, 增大比表面积, 增加反应活性中心, 增加催化效果, 载体分叉CNTs的枝杈形结构, 有利于纳米NiO/分叉CNTs复合粒子催化性能的提高.  相似文献   

13.
The reaction of a SiC/C composite powder in an arcing plasma forms carbon nanotubes in good yield. Besides carbon nanotubes, a Si/C composite composed of β SiC covered with a shell of graphite is formed. The graphitic carbon surface layers of the carbon shell of this composite reacts further to form carbon nanotubes when heated to 600 °C. This process seems highly effective since only a small overall low weight loss, indicative for a complete carbon shell oxidation is observed by thermal analysis. The formation of the carbon nanotubes from SiC is unlikely since no SiO2 has been found when heating the SiC/C core shell composite to its reaction temperature of 600 °C under O2. The CNTs formed are of good quality with 3 to 6 concentric walls and high aspect ratio. Occasionally even single walled carbon naotubes have been observed.  相似文献   

14.
Carbon nanomaterials such as carbon nanotubes (CNTs), graphene and their hybrid have been studied extensively. Despite having excellent properties of CNTs and graphene have not yet been fully realized in the polymer composites. During fabrication agglomeration of CNTs and restacking of graphene is a serious concern that results in the degradation of properties of nanomaterials into the final composites. To improve the dispersion of CNTs and restacking graphene, in the present research work, we focused on the hybridization of graphene oxide and CNTs. Multiwalled carbon nanotubes (MWCNTs), functionalized carbon nanotubes (FCNTs), and graphene oxide-carbon nanotubes (GCNTs) reinforced acrylonitrile butadiene styrene (ABS) composites were prepared separately by vacuum filtration followed by hot compression molding. Further, dynamic mechanical analysis (DMA), and electromagnetic interference (EMI) shielding properties of ABS composites reinforced carbon nanofillers were investigated. The dynamic mechanical properties of polymers strongly depend on the adhesion of fillers and polymer, entanglement density of polymer chains in the presence of carbon fillers. The dynamic mechanical characteristics such as storage, loss modulus, and damping factor of prepared composites were significantly affected by the incorporation of MWCNTs, FCNTs, and GCNTs. Maximum EMI shielding effectiveness of −49.6 dB was achieved for GCNT-ABS composites which were highest compared to MWCNTs-ABS composites (−38.6 dB) and FCNTs-ABS composites (−36.7 dB) in the Ku band (12.4–18 GHz). These results depict the great potential of GCNTs-ABS composites to be used in various applications of efficient heat dissipative EMI shielding materials for electronic devices.  相似文献   

15.
《中国化学》2017,35(12):1875-1880
To improve the dispersion of carbon nanotubes (CNTs) and flame retardancy of layered double hydroxide (LDH) in epoxy resin (EP), organic nickel‐iron layered double hydroxide (ONiFe‐LDH‐CNTs) hybrids were assembled through co‐precipitation. These hybrids were further used as reinforcing filler in EP. EP/ONiFe‐LDH‐CNTs nanocomposites containing 4 wt% of ONiFe‐LDH‐CNTs with different ratios of ONiFe‐LDH and CNTs were prepared by ultrasonic dispersion and program temperature curing. The structure and morphology of the obtained hybrids were characterized by different techniques. The dispersion of nanofillers in the EP matrix was observed by transmission electron microscopy (TEM). The results revealed a coexistence of exfoliated and intercalated ONiFe‐LDH‐ CNTs in polymer matrix. Strong combination of the above nanofillers with the EP matrix provided an efficient thermal and flame retardant improvement for the nanocomposites. It showed that EP/ONiFe‐LDH‐CNTs nanocomposites exhibited superior flame retardant and thermal properties compared with EP. Such improved thermal properties could be attributed to the better homogeneous dispersion, stronger interfacial interaction, excellent charring performance of ONiFe‐LDH and synergistic effect between ONiFe‐LDH and CNTs.  相似文献   

16.
Nickel oxide and carbon (NiO/C) nanosheet array was fabricated on Ti foil for the first time by calcining the precursor, which was synthesized through the hydrothermal reaction of nickel acetate, urea and glucose. The slow release of OH by the hydrolysis of urea aided in the direct nucleation and adhesion of precursor seeds on Ti substrate. The presence of carbon ensured a large specific surface area and good conductivity of the final NiO/C composite. The prepared NiO/C nanosheet array exhibited higher catalytic oxidation activity of glucose compared with the pure NiO nanosheet at a detection limit of 2 μM, linear range up to 2.6 mM (R2=0.99961), and sensitivity of 582.6 μAm M−1 cm−2. With good analytical performance, simple preparation and low cost, this composite is promising for nonenzymatic glucose sensing.  相似文献   

17.
利用水热法制备了粒径为90-130 nm的多孔硬碳球, 并通过浸渍与煅烧的方法制备了硬碳球均匀负载纳米氧化镍颗粒(~10 nm)复合材料. 硬碳球的表面官能团和内部的微孔保证了氧化镍颗粒在硬碳上的均匀分布. 在100 mA·g-1的电流密度下, 复合材料电极首次充电比容量高达764 mAh·g-1; 在100 mA·g-1的电流密度下循环100 个周期后电极充电比容量保持在777 mAh·g-1, 容量保持率为101%; 800 mA·g-1电流密度下电极的充电比容量达380 mAh·g-1, 显示复合材料电极具有优异的循环性能和倍率性能. 硬碳的表面官能团和内部微孔为氧化镍提供了优先形核位点, 保证了二者的牢固结合, 使复合材料获得了“协同效应”, 从而使复合电极具备更短的锂离子扩散路径、更高的电导率和更多的锂离子脱嵌位点. 这种方法还可用于制备硬碳/其他金属氧化物复合材料.  相似文献   

18.
本文以碳纳米管(CNTs)与Ni2P纳米晶制备CNTs-Ni2P复合材料,首次研究其染料敏化太阳能电池(DSSCs)的光阴极材料性能.使用X射线衍射(XRD)和透射电子显微镜(TEM)测定材料结构,观察材料形貌.结果表明,复合材料由碳纳米管和六方结构的磷化镍构成,无其它磷化物杂相,磷化镍纳米晶(约10 nm)分散于CNTs表面.交流阻抗(EIS)测试显示,与CNTs和Ni2P对电极相比,CNTs-Ni2P对电极的电荷转移电阻和扩散阻抗较低,接近Pt-FTO对电极水平.CNTs-Ni2P对电极的DSSCs光电流达12.9 mA·cm-2,能量转化效率达5.6%,接近Pt-FTO对电极的DSSCs能量转化效率(5.9%).这归因于高电催化活性的磷化镍纳米晶与高电导CNTs的协同效应.  相似文献   

19.
Metal selenides are promising anodes for sodium-ion batteries (SIBs) due to the high theoretical capacity through conversion reaction mechanism. However, developing metal selenides with superior electrochemical sodium-ion storage performance is still a great challenge. In this work, a novel composite material of free-standing NiSe2 nanoparticles encapsulated in N-doped TiN/carbon composite nanofibers with carbon nanotubes (CNTs) in-situ grown on the surface (NiSe2@N-TCF/CNTs) is prepared by electrospinning and pyrolysis technique. In this composite materials, NiSe2 nanoparticles on the surface of carbon nanofibers were encapsulated into CNTs, thus avoiding aggregation. The in-situ grown CNTs not only improve the conductivity but also act as a buffer to accommodate the volume expansion. TiN inside the nanofibers further enhances the conductivity and structural stability of carbon-based nanofibers. When directly used as anode for SIBs, the NiSe2@N-TCF/CNT electrode delivered a reversible capacity of 392.1 mAh/g after 1000 cycles and still maintained 334.4 mAh/g even at a high rate of 2 A/g. The excellent sodium-ion storage performance can be attributed to the fast Na+ diffusion and transfer rate and the pseudocapacitance dominated charge storage mechanism, as is evidenced by kinetic analysis. The work provides a novel approach to the fabrication of high-performance anode materials for other batteries.  相似文献   

20.
采用改进的Hummers法制备了氧化石墨烯(GO),经水合肼还原得到石墨烯(RGO),通过浸渍法制备了石墨烯负载的镍基催化剂(Ni/RGO);对其催化二氧化碳甲烷化反应的性能进行了研究,并与以碳纳米管(CNTs)和活性炭(AC)为载体负载的Ni基催化剂进行了比较.由于催化剂的载体分别为RGO,CNTs和AC,所以Ni将会表现出不同的形态.利用红外光谱(FTIR)、比表面积(BET)测试、程序升温还原(H2-TPR)、X射线衍射(XRD)分析和透射电子显微镜(TEM)等表征手段对其结构及物理性质进行了表征.结果表明,Ni/RGO具有相对较大的比表面积(316 m~2/g),Ni在Ni/RGO上的颗粒尺寸(5.3 nm)小于其在Ni/CNTs(8.9 nm)和Ni/AC(11.6 nm)上的颗粒尺寸;该催化剂在二氧化碳甲烷化反应中具有更高的催化活性和选择性,而且具有良好的使用寿命.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号