首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of the η1-acetylide complex [(η5-C5H5)(CO)(NO)W---CC---C(CH3)3]Li (4) with 1,2-diiodoethane in THF at −78 °C, followed by the addition of Li---CC---R [R=C(CH3)3, C6H5, Si(CH3)3, 6a6c] or n-C4H9Li and protonation with H2O, afforded the corresponding oxametallacyclopentadienyl complexes (η5-C5H5)W(I)(NO)[η2-O=C(CC---R)CH=CC(CH3)3] (7a7c), 8c and (η5-C5H5)W(I)(NO)[η2-O=C(n-C4H9)CH=CC(CH3)3] (9). The formation of these metallafuran derivatives is rationalized by the electrophilic attack of 1,2-diiodoethane onto the metal center of 4 to form first the neutral complex [(η5-C5H5)(I)(CO)(NO)W---CC---C(CH3)3] (5). Subsequent nucleophilic addition of Li---CC---R 6a6c or n-C4H9Li and a reductive elimination step followed by protonation leads to the products 7a7c and 9. One reaction intermediate could be trapped with CF3SO3CH3 and characterized by a crystal structure analysis. The identity of another intermediate was established by infrared spectroscopic data. The oxametallacyclopentadienyl complex 10 forms in the presence of excess 1,2-diiodoethane through an alternative pathway and crystallizes as a clathrate containing iodine.  相似文献   

2.
The reactions of ionized di-n-butyl ether are reported and compared with those of ionized n-butyl sec-butyl and di-sec-butyl ether. The main fragmentation of metastable (CH3CH2CH2CH2)2O+. is C2H5? loss (?85%), but minor amounts (2–4%) of CH3?, C4H7?, C4H9?, C4H10 and C4H10O are also eliminated. In contrast, C2H5? elimination is of much lower abundance (20 and 4%, respectively) from metastable CH3CH2CH2CH2OCH(CH3)CH2CH3+. and [CH3CH2(CH3)CH]2O+., which expel mainly C2H6 and CH3? (35–55%). Studies on collisional activation spectra of the C6H13O+ oxonium ions reveal that C2H5? loss from (CH3CH2CH2CH2)2O+. gives the same product, (CH3CH2CH2CH2 +O?CHCH3) as that formed by direct cleavage of CH3CH2CH2CH2OCH(CH3)CH2CH3+.. Elimination of C2H5? from (CH3CH2CH2CH2)2O+. is interpreted by means of a mechanism in which a 1,4-H shift to the oxygen atom initiates a unidirectional skeletal rearrangement to CH3CH2CH2CH2OCH(CH3)CH2CH3+., which then undergoes cleavage to CH3CH2CH2CH2+O?CHCH3 and C2H5?. Further support for this mechanism is obtained from considering the collisional activation and neutralization-reionization mass spectra of the (C4H9)2O+. species and the behaviour of labelled analogues of (CH3CH2CH2CH2)2O+.. The rate of ethyl radical loss is suppressed relative to those of alternative dissociations by deuteriation at the γ-position of either or both butyl substituents. Moreover, C2H5? loss via skeletal rearrangement and fragmentation of the unlabelled butyl group in CH3CH2CH2CH2OCH2CH2CD2CH3+. occurs approximately five times more rapidly than C2H4D? expulsion via isomerization and fission of the labelled butyl substituent. These findings indicate that the initial 1,4-hydrogen shift is influenced by a significant isotope effect, as would be expected if this step is rate limiting in ethyl radical loss.  相似文献   

3.
Octacalcium phosphate(OCP), Ca8(HPO4)2(PO4)4·5H2O, consists of alternative stackings of layers with an apatitic structure and a brushite-like composition. Here we consider whether or not OCP is able to complex with organic substances. The interplanar spacing (d100) of OCP prepared in the presence of dicarboxylates (RC2O4 2–; R=organic group) expanded from the original value of 18.7 Å to 19.2–26.1 Å depending on the length of R. Examples of R were CnH2n(n=1–6), CH(CH3)CH2, C(CH3)=CH, CH=CH, CH2CH=CHCH2 and C6H4. Structural considerations and experimental data suggested that dicarboxylates were incorporated into the OCP structure through the replacement of HPO4 2– by RC2O4 2–.  相似文献   

4.
The reaction of dimeric rhodium precursor [Rh(CO)2Cl]2 with two molar equivalent of 1,1,1-tris(diphenylphosphinomethyl)ethane trichalcogenide ligands, [CH3C(CH2P(X)Ph2)3](L), where X = O(a), S(b) and Se(c) affords the complexes of the type [Rh(CO)2Cl(L)] (1a–1c). The complexes 1a–1c have been characterized by elemental analyses, mass spectrometry, IR and NMR (1H, 31P and 13C) spectroscopy and the ligands a–c are structurally determined by single crystal X-ray diffraction. 1a–1c undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I and C6H5CH2Cl to give Rh(III) complexes of the types [Rh(CO)(COR)ClXL] {R = –CH3 (2a–2c), –C2H5 (3a–3c); X = I and R = –CH2C6H5 (4a–4c); X = Cl}. Kinetic data for the reaction of a–c with CH3I indicate a first-order reaction. The catalytic activity of 1a–1c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 1564–1723) is obtained compared to that of the well-known commercial species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature 130 ± 2 °C, pressure 30 ± 2 bar and time 1 h.  相似文献   

5.
The effect of changes in the internal energy distribution of the fragmenting ion on the ratio of metastable ion intensities for two competing fragmentation reactions has been investigated both theoretically and experimentally. Model calculations have shown that if the competing reactions have significantly different activation energies the metastable intensity ratio does depend on the internal energy distribution although large changes are necessary before the ratio changes by more than a factor of two. Experimentally the metastable characteristics of [C3H7O]+ ions of nominal structures [CH3CH2O+?CH2] (I), [(CH3)2C?O+H] (II), [CH3CH2CH?O+H] (III) and [CH3O+?CHCH3] (IV) have been examined. For each structure the metastable characteristics are found to be distinctive and independent of changes in the internal energy distribution of the fragmenting ion where these changes result from altering the precursor of the [C3H7O]+ ions. It is suggested that these internal energy changes can be estimated from the fraction of [C3H7O]+ ions which fragment in the ion-source. It is concluded that structures I to IV represent stable and distinct ionic structures.  相似文献   

6.
The fragmentation of 2,7-octanedione, induced by chemical ionization with methane as a reagent gas (CI (CH4)), is shown to be extensively governed by the interaction of the two carbonyl groups. Tandem mass spectrometry reveals that a sequential loss of H2O and C2H4O from the [M + H]+ ion competes with sequential loss of H2O and C6H10, and that both processes occur via the same [MH - H2O]+ intermediate. This intermediate is likely to be formed via intramolecular gas-phase aldol condensation and subsequent dehydration. The resulting C(1) protonated 1-acetyl-2-methylcyclopentene structure readily accounts for the observed further decomposition to CH3C?O+ and 1-methylcyclopentene (C6H10) or, alternatively, to [C6H9]+ (e. g. 1-methylcyclopentenylium) ions and acetaldehyde (C2H4O). Support for this mechanistic rationale is derived from deuterium isotope labelling and low-energy collision-induced dissociation (CID) of the [MH - H2O]+ ion. The common intermediate shows a CID behaviour indistinguishable by these techniques from that of reference ions, which are produced by gas-phase protonation of the authentic cyclic aldol or by gas-phase addition of an acetyl cation to 1-methylcyclopentene in a CI (CH3COOCH3) experiment.  相似文献   

7.
Cyclopalladation of mono-, di- and tribenzylamine has been investigated by reacting the corresponding amines with an equimolar amount of palladium(II) acetate (reaction i), or by heating the corresponding bis-amine complexes [Pd(O2CMe)2{(PhCH2)nNH3−n}2] (n=1, 2) (reaction ii). By the reaction i, all the three amines undergo cyclopalladation. However, in the case of the reaction ii, only the dibenzylamine complex [Pd(O2CMe)2{(PhCH2)2NH}2] has been converted into a cyclopalladated complex. The reactivity of the three benzylamines towards cyclopalladation has been discussed in terms of the co-ordinating ability influenced by the bulkiness around the nitrogen atom. Temperature-dependent 1H-NMR spectra are observed for mononuclear cyclopalladated complexes [Pd(O2CMe){C6H4CH2N(CH2Ph)2C1N}L] (L=PPh3, AsPh3) and are attributed to the dissociation of the nitrogen atom in the cyclopalladated chelate ring. A heteroleptic bis-cyclopalladated complex [Pd[C6H4CH2N(CH2Ph)2C1N](C6H4CH2NMe2C1N)] has also been prepared. X-ray crystallographic studies on [{Pd(O2CMe)[C6H4CH2N(CH2Ph)2C1N]}2] and [Pd[C6H4CH2N(CH2Ph)2C1N](C6H4CH2NMe2C1N)] have been reported.  相似文献   

8.
New mixed ligand complexes of the following stoichiometric formulae: M(2-bpy)2(RCOO)2·nH2O, M(4-bpy)(RCOO)2·H2O and M(2,4’-bpy)2(RCOO)2·H2O (where M(II)=Zn, Cd; 2-bpy=2,2’-bipyridine, 4-bpy=4,4′-bipyridine, 2,4′-bpy=2,4′-bipyridine; R=C2H5; n=2 or 4) were prepared in pure solid-state. These complexes were characterized by chemical and elemental analysis, IR and conductivity studies. Thermal behaviour of compounds was studied by means of DTA, DTG, TG techniques under static conditions in air. The final products of pyrolysis of Cd(II) and Zn(II) compounds were metal oxides MO. A coupled TG/MS system was used to analyse of principal volatile products of thermal decomposition or fragmentation of Zn(4-bpy)(RCOO)2·H2O under dynamic air and argon atmosphere. The principal species correspond to: C+, CH+, CH3 +, C2H2 +, HCN+, C2H5 + or CHO+, CH2O+ or NO+, CO2 +, 13C16O2 + and 12C16O18O+ and others; additionally CO+ in argon atmosphere.  相似文献   

9.
New dinuclear copper(II) complexes with azomethines and hydrazones, which were produced by condensation of substituted salicylaldehyde derivatives with 1,3-diaminopropan-2-ol or carbo(thiocarbo) hydrazide, were studied. The structures of the [Cu2L(μ-CH2ClCOO)(CH3OH)]·(CH3OH) (L = C17H15N2O3) and [Cu2L2(Cl3CCO)(CH3OH)]·H2O (L2 = C32H42N4O3) complexes were established by X-ray diffraction. The magnetic properties of these complexes, including the influence of the nature of the substituents in the ligands on exchange interactions, were studied.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 592–596, March, 2005.  相似文献   

10.
The catalytic reaction of CH4, with N2O at 773–823 K on a V2O5/SiO2 catalyst affords products of the partial oxidation (HCHO and CH3OH), exhaustive oxidation (CO), and oxidative condensation (C2H5OH and CH3CHO) of methane. A mechanism is proposed for the complex reaction, including the intermediate compounds V5+O and V4+CH3OH as common intermediates for all the routes.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 5, pp. 641–646, September–October, 1987.  相似文献   

11.
Titanium tert-butoxide (Ti(OC(CH3)3)4; Ti(O t Bu)4) was chemically modified with catechol (C6H4(OH)2) and hydrolysis and condensation behavior of a resultant modified alkoxide was studied. Spectroscopic results revealed that the reaction between titanium tert-butoxide and catechol resulted in the formation of catecholate groups (C6H4O2 2–) bound to titanium and corresponding release of tert-butanol. The mass spectrometry and cryoscopy indicated that main species was a dimer [(C6H4O2)2Ti2(O t Bu)4]. The hydrolysis of the modified alkoxide in the system with Ti:tetrahydrofuran (THF):H2O = 1:10:x (x = 0.5–10) resulted in the partial hydrolysis, and all the hydrolyzed products after the drying under reduced pressure were soluble in THF and chloroform.  相似文献   

12.
The electron-impact mass spectra of coordination compounds of nickel(II) with the general formula NiL2, in which the radical anions [C6H5N -N-C(SR)=NR1], where R=CH3 and R=H(I), R=CD3 and R=H(II), R=C2H5 and R=H(III), and R=CH3 and R=C6H5(IV), serve as the ligands, have been studied. In the mass spectra of compounds I–IV the peaks of the molecular ions have the highest intensity among the organometallic fragments. The initial stage of the fragmentation of [M]+. is associated with the formation of the rearrangement ions [NiL + H]+, [NiL + C6H5]+, and [NiL + SR]+, ions, whose appearance becomes understood, if it is taken into account that the removal of one ligand is accompanied by the impairing of spins and the mass spectra of compounds I–IV is the presence of lines for the [NiL]+ ion in them. The dissociative ionization of compounds I–IV is strongly reminiscent of the behavior of ordinary complexes of metals with ligands of the nonradical type. The fragmentation scheme of the molecular ions under the effects of electron impact has been presented and discussed.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 26, No. 3, pp. 368–371, May–June, 1990.  相似文献   

13.
The ion retardation method (whereby an ion beam is prevented from entering a collision gas cell by means of a voltage applied thereto) for permitting the examination of the neutral products of unimolecular ion fragmentations has been extended to include observations of neutral products generated by collisions before the gas cell and their related phenomenology. Observations obtained using an ion beam deflection electrode, an alternative method of preventing the ion beam from entering the collision cell, are also reported. When low collision gas pressures are employed (<2×10?7 Torr He), this latter method provides collisionally induced dissociative ionization (CIDI) mass spectra of unimolecularly generated neutral fragmentation products, free of complications arising from events induced by collisions occurring outside the collision cell. The CIDI mass spectra of CH3˙, C2H4, CH3?O, CH3OH and C2H6 generated from positive ion precursors and CH3˙, CH3O˙ and C6H5NO2 generated by electron loss from negative ions are described.  相似文献   

14.
Electron-impact-induced mass spectra of MoO2(C5H7O2)2, 1, and Mo2O3(C5H7O2)4, 2, recorded at an ion-source temperature of 100°C show the molecular ion signals at m/z 328 and at m/z 636, respectively, indicating that they do not undergo association in the vapour state. The parent ion of 1, unlike bis(acetylacetonato)metalates of the first-row transition metals, loses (CH2CO followed by C3H5O to produce [MoO2(C5H7O2)]+ at m/z 229, the base peak, which ultimately fragments to [MoO2]+. The molecular ion of 2, [Mo2O3(C5H7O2)4]+, undergoes fragmentation following two different, but equally probable, pathways with one involving the loss of C5H7O2 and C5H7O groups producing the ion [Mo2O4(C5H7O2)2]+, and the other involving the formation of the ion [MoO(acac)2]+ directly from the parent ion. The signal at m/z 312 owing to the ion [MoO(C5H7O2)2]+ constitutes the base peak in the spectrum of 2. Metastable transitions were studied, and the most probable fragmentation schemes for the compounds 1 and 2 are suggested. There is evidence for CH3 shift from the ligand to the oxygen atoms bound to the metal centres or to form metal-carbon bonds.  相似文献   

15.
Metal atoms were deposited on an Si (111)-7 × 7 surface, and they were adsorbed with alcohol gases (CH3OH/C2H5OH/C3H7OH). Initially, CnH2n+1OH adsorption was simply used as an intermediate layer to prevent the chemical reaction between metal and Si atoms. Through scanning tunneling microscopy (STM) and a mass spectrometer, the CnH2n+1OH dissociation process is further derived as the construction of a surface quasi-potential with horizontal and vertical directions. With the help of three typical metal depositions, the surface characteristics of CH3OH adsorption are more clearly presented in this paper. Adjusting the preheating temperature, the difference of thermal stability between CH3O and H+ could be obviously derived in Au deposition. After a large amount of H+ was separated, the isolation characteristic of CH3O was discussed in the case of Fe deposition. In the process of building a new metal-CH3O-H+ model, the dual characteristics of CH3OH were synthetically verified in Sn deposition. CH3O adsorption is prone to influencing the interaction between the metal deposition and substrate surface in the vertical direction, while H+ adsorption determines the horizontal behavior of metal atoms. These investigations lead one to believe that, to a certain extent, the formation of regular metal atomic structures on the Si (111)-7 × 7-CH3OH surface is promoted, especially according to the dual characteristics and adsorption models we explored.  相似文献   

16.
A detailed energy-resolved study of the fragmentation of CH2?CHCH(OH)CD2CD3 (1-d5) has been carried out using metastable ion studies and charge exchange techniques, combined with collision-induced dissociation studies to establish the structures of fragment ions. At low internal energies (metastable ions) the molecular ion of 1-d5 rearranges to the 3-pentanone structure and fragments by loss of C2H5 or C2D5 leading to the acyl structure, [CH3CH2C?O]+ or [CD3CD2C?O]+, for the fragment ion. However, with increasing internal energy of the molecular ion this rearrangement process decreases rapidly in importance and loss of C2D5 by direct cleavage, leading to [CH2?CHCH?OH]+, becomes the dominant fragmentation reaction. As a result the [C3H5O]+ ion seen in the electron impact mass spectrum of 1-penten-3-ol has predominantly the protonated acrolein structure.  相似文献   

17.
The purpose of this report is to quantitatively find the cause for the elongation of the R-C bond in R-COO (R = H, CH3 and C2H5) and the shortening of the C-O bond in CH3-O upon deprotonation in the gas phase. These elongations and shortenings result from the contributions of R---CO2 and H---CH2=O as resonance structures to the systems. Because these structures must make only a small contribution in the crystal, the R-C bond lengths of R-COO (R= H and CH3) in the crystal structure are shorter than those in the gas phase.  相似文献   

18.
Summary Negative ion mass spectra for 3 aliphatic and 4 aromatic isocyanates have been obtained by low pressure chemical ionization, using CH4, CO2 and N2O as reagent gases. All compounds furnished intense anions at m/z 42. With CH4, quasi-molecular anions were observed at m/z M+1 for aliphatic and m/z M+1 and M–1 for aromatic isocyanates. With N2O, anionic substitution products at m/z M+15 and M+30 were observed, and with CO2 and N2O, peaks at m/z M–12 could be detected for all aromatic isocyanates. Studies with 13CO2 and C18O2 as reagent gases showed that the anions at m/z M–12 and M+15 correspond to [M–CO+O] and [M–H+O], respectively.
Negativionen-Massenspektrometrie mit chemischer Ionisierung von einigen Isocyanaten
Zusammenfassung Die Negativionen-Massenspektren von 3 aliphatischen und 4 aromatischen Isocyanaten wurden mittels chemischer Ionisation bei tiefem Quellendruck aufgenommen, und zwar mit den Reagensgasen CH4, CO4 und N2O. Alle Verbindungen lieferten intensive Anionen mit m/z 42. Mit CH4 erhielten wir die quasi-molekularen Anionen M+1 für aliphatische sowie M+1 und M–1 für aromatische Isocyanate. Das Reagens N2O ergab die anionischen Substitutionsprodukte M+15 und M+30. Sowohl CO2 als auch N2O führten mit aromatischen Isocyanaten zur Bildung von M–12 Anionen. Versuche mit 13CO2 und mit C18O2 als Reagensgase zeigten, daß die Anionen M–12 und M+15 den Ionen [M–CO+O] und [M–H+O] entsprechen.
  相似文献   

19.
Excess molar volumes V E and excess molar heat capacities C P E at constant pressure have been measured, at 25°C, as a function of composition for the four binary liquid mixtures propylene carbonate (4-methyl-1,3-dioxolan-2-one, C4H6O3; PC) + benzene (C6H6;B), + toluene (C6H5CH3;T), + ethylbenzene (C6H5C2H5;EB), and + p-xylene (p-C6H4(CH3)2;p-X) using a vibrating-tube densimeter and a Picker flow microcalorimeter, respectively. All the excess volumes are negative and noticeably skewed towards the hydrocarbon side: V E (cm3-mol–1) at the minimum ranges from about –0.31 at x1=0.43 for {x1C4H6O3+x2p-C6H4(CH3)2}, to –0.45 at x1=0.40 for {x1C4H6O3+x2C6H5CH3}. For the systems (PC+T), (PC+EB) and (PC+p-X) the C P E s are all positive and even more skewed. For instance, for (PC+T) the maximum is at x 1,max =0.31 with C P,max E =1.91 J-K–1-mol–1. Most interestingly, C P E of {x1C4H6O3+x2C6H6} exhibits two maxima near the ends of the composition range and a minimum at x 1,min =0.71 with C P,min E =–0.23 J-K–1-mol–1. For this type of mixture, it is the first reported case of an M-shaped composition dependence of the excess molar heat capacity at constant pressure.Communicated at the Festsymposium celebrating Dr. Henry V. Kehiaian's 60th birthday, Clermont-Ferrand, France, 17–18 May 1990.  相似文献   

20.
η6-o-Chlorotoluene-η5-cyclopentadienyliron hexafluorophosphate undergoes nucleophilic substitution of the chlorine atom with anions generated (K2CO3/DMF) from methyl thioglycolate, diethyl malonate, dimethyl malonate, methyl acetoacetate and 2,4-pentanedione. The compounds prepared were o-CH3C6H4SCH2CO2CH3FeCp+PF6, o-CH3C6H4CH(CO2C2H5)2FeCp+PF6, o-CH3C6H4CH(CO2CH3)2FeCp+PF6, o-CH3C6H4CH(COCH3)CO2CH3FeCp+PF6 and o-CH3C6H4CH2COCH3FeCp+PF6 . Similarly, the reaction of diethyl malonate, dimethyl malonate, methyl acetoacetate anions and methylamine with η6-2,6-dichlorotoluene-η5-cyclopentadienyliron hexafluorophosphate yielded monosubstitution of one of the chloro groups. The complexes prepared in this study were η6-diethyl(3-chloro-2-methyl) phenylmalonate- η5-cyclopentadienyliron hexafluorophosphate, η6-dimethyl(3-chloro-2-methyl)phenylmalonate-η5-cyclopentadienyliron hexafluorophosphate, η6-methyl(3-chloro-2-methyl)phenylacetoacetate-η5-cyclopentadienyliron hexafluorophosphate and η6-3-chloro(2-methyl-N-methyl)aniline-η5-cyclopentadienyliron hexafluorophosphate. Reaction of η6-2,6-dichlorotoluene-η5-cyclopentadienyliron hexafluorophosphate with excess methanol as well as methyl thioglycolate in the presence of K2CO3 resulted in disubstitution of both chloro groups to yield new complexes, η6-2,6-dimethoxytoluene-η5-cyclopentadienyliron hexafluorophosphate and η6-methyl[(2-methylphenyl)1,3-dithio] diacetate-η55-cyclopentadienyliron hexafluorophosphate, respectively. Complexes o-CH3C6H4CH(CO2C2H5)2FeCp+PF6, o-CH3C6H4CH(CO2CH3)2FeCp+PF6 and o-CH3C6H4CH2 COCH3FeCp+ PF6 react with excess K2CO3 and benzyl bromide in refluxing methylene chloride to give 80–90% yields of complexes o-CH3C6H4C(CH2C6H5)(CO2C2H5)2FeCp+PF6, o-CH3C6H4C(CH2C6H5)(CO2CH3)2FeCp+PF6 and o-CH3C6H4CH(CH2C6H5)COCH3FeCp+PF6, respectively. Reaction of complex, o-CH3C6H4C(CH2C6H5)(CO2C2H5)2FeCp+PF6 with one molar equivalent of t-BuOK followed by acidic work-up gives o-(C2H5CO2CH2)C6H4CH(CO2C2H5)CH2C6H5FeCp+PF6. Similarly, reactions of complexes o-CH3C6H4C(CH2C6H5)(CO2C2H5)2FeCp+PF6 and o-CH3C6H4C(CH2C6H5)(CO2CH3)2FeCp+PF6 with t-BuOK in THF followed by alkylation with methyl iodide gave the new complexes, o-(C2H5O2C(CH3)CH)C6H4CH(CH2C6H5)CO2C2H5FeCp+PF6 and o-(CH3O2C(CH3)CH)C6H4CH(CH2C6H5)CO2CH3FeCp+PF6, respectively. Vacuum sublimation of the new complexes, o-CH3C6H4C(CH2C6H5)(CO2C2H5)2FeCp+PF6 and o-(C2H5O2CCH2)C6H4CH(CH2C6H5)CO2C2H5FeCp+PF6 gives o-CH3C6H4C(CH2C6H5)(CO2C2H5)2 and O-(C2H5O2CCH2)C6H4CH(CH2C6H5)CO2C2H5, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号