首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The affinity isolation of pre-purified plasmid DNA (pDNA) from model buffer solutions using native and poly(ethylene glycol) (PEG) derivatized zinc finger-GST (Glutathione-S-Transferase) fusion protein was examined in PEG-dextran (DEX) aqueous two-phase systems (ATPSs). In the absence of pDNA, partitioning of unbound PEGylated fusion protein into the PEG-rich phase was confirmed with 97.5% of the PEGylated fusion protein being detected in the PEG phase of a PEG 600-DEX 40 ATPS. This represents a 1322-fold increase in the protein partition coefficient in comparison to the non-PEGylated protein (Kc = 0.013). In the presence of pDNA containing a specific oligonucleotide recognition sequence, the zinc finger moiety of the PEGylated fusion protein bound to the plasmid and steered the complex to the PEG-rich phase. An increase in the proportion of pDNA that partitioned to the PEG-rich phase was observed as the concentration of PEGylated fusion protein was increased. Partitioning of the bound complex occurred to such an extent that no DNA was detected by the picogreen assay in the dextran phase. It was also possible to partition pDNA using a non-PEGylated (native) zinc finger-GST fusion protein in a PEG 1000-DEX 500 ATPS. In this case the native ligand accumulated mainly in the PEG phase. These results indicate good prospects for the design of new plasmid DNA purification methods using fusion proteins as affinity ligands.  相似文献   

2.
The current study explores the possibility of using a polyethyleneglycol(PEG)-ammonium sulphate aqueous two-phase system (ATPS) as an early step in a process for the purification of a model 6.1 kbp plasmid DNA (pDNA) vector. Neutralised alkaline lysates were fed directly to ATPS. Conditions were selected to direct pDNA towards the salt-rich bottom phase, so that this stream could be subsequently processed by hydrophobic interaction chromatography (HIC). Screening of the best conditions for ATPS extraction was performed using three PEG molecular weights (300, 400 and 600) and varying the tie-line length, phase volume ratio and lysate load. For a 20% (w/w) lysate load, the best results were obtained with PEG 600 using the shortest tie-line (38.16%, w/w). By further manipulating the system composition along this tie-line in order to obtain a top/bottom phase volume ratio of 9.3 (35%, w/w PEG 600, 6%, w/w NH4)2 SO4), it was possible to recover 100% of pDNA in the bottom phase with a three-fold increase in concentration. Further increase in the lysate load up to 40% (w/w) with this system resulted in a eight-fold increase in pDNA concentration, but with a yield loss of 15%. The ATPS extraction was integrated with HIC and the overall process compared with a previously defined process that uses sequential precipitations with iso-propanol and ammonium sulphate prior to HIC. Although the final yield is lower in the ATPS-based process the purity grade of the final pDNA product is higher. This shows that it is possible to substitute the time-consuming two-step precipitation procedure by a simple ATPS extraction.  相似文献   

3.
Cerein 8A is an antimicrobial peptide with potential application against food spoilage and pathogenic bacteria. The partitioning of cerein 8A was investigated in two liquid-liquid extraction systems that are considered promising for bioseparation and purification purposes. Aqueous two-phase systems (ATPSs) were prepared with polyethylene glycol (PEG) and inorganic salts, and the addition of NaCl was investigated in this system. The best results concerning partition coefficients (K (b)) were obtained with PEG?+?ammonium sulphate, and K (b) value significantly increases when NaCl was added. Cerein 8A was effectively extracted into the micelle-rich phase in a 4% Triton X-114 medium. Recovery yield was higher for ATPS compared to micellar systems. Cerein 8A can be isolated from a crude suspension containing the bioactive molecule by ATPSs. Successful implementation of peptide partitioning represents an important step towards developing a low-cost effective separation method for cerein 8A.  相似文献   

4.
The DNA binding fusion protein, LacI–His6–GFP, together with the conjugate PEG–IDA–Cu(II) (10 kDa) was evaluated as a dual affinity system for the pUC19 plasmid extraction from an alkaline bacterial cell lysate in poly(ethylene glycol) (PEG)/dextran (DEX) aqueous two-phase systems (ATPS). In a PEG 600–DEX 40 ATPS containing 0.273 nmol of LacI fusion protein and 0.14% (w/w) of the functionalised PEG–IDA–Cu(II), more than 72% of the plasmid DNA partitioned to the PEG phase, without RNA or genomic DNA contamination as evaluated by agarose gel electrophoresis. In a second extraction stage, the elution of pDNA from the LacI binding complex proved difficult using either dextran or phosphate buffer as second phase, though more than 75% of the overall protein was removed in both systems. A maximum recovery of approximately 27% of the pCU19 plasmid was achieved using the PEG–dextran system as a second extraction system, with 80–90% of pDNA partitioning to the bottom phase. This represents about 7.4 μg of pDNA extracted per 1 mL of pUC19 desalted lysate.  相似文献   

5.
The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the target protein remained in the bottom phase when the non-functionalised systems were tested. The effect of increasing functionalised PEG concentration and the type of ligand were studied. Afterwards, selectivity studies were performed with the most successful ligands first by using systems containing pure proteins and an artificial mixture of proteins and, subsequently, with systems containing a Chinese hamster ovary (CHO) cells supernatant. The PEG/phosphate ATPS was not suitable for the affinity partitioning of IgG. In the PEG/dextran ATPS, the diglutaric acid functionalised PEGs (PEG-COOH) displayed great affinity to IgG, and all IgG could be recovered in the top phase when 20% (w/w) of PEG 150-COOH and 40% (w/w) PEG 3350-COOH were used. The selectivity of these functionalised PEGs was evaluated using an artificial mixture of proteins, and PEG 3350-COOH did not show affinity to IgG in the presence of typical serum proteins such as human serum albumin and myoglobin, while in systems with PEG 150-COOH, IgG could be recovered with a yield of 91%. The best purification of IgG from the CHO cells supernatant was then achieved in a PEG/dextran ATPS in the presence of PEG 150-COOH with a recovery yield of 93%, a purification factor of 1.9 and a selectivity to IgG of 11. When this functionalised PEG was added to the ATPS, a 60-fold increase in selectivity was observed when compared to the non-functionalised systems.  相似文献   

6.
The partition of human antibodies in aqueous two-phase systems (ATPSs) of polyethylene glycol (PEG) and phosphate was systematically studied using first pure proteins systems and then an artificial mixture of proteins containing 1mg/ml human immunoglobulin G (IgG), 10mg/ml serum albumin and 2mg/ml myoglobin. Preliminary results obtained using pure proteins systems indicated that the PEG molecular weight and concentration, the pH value and the salts concentration had a pronounced effect on the partitioning behaviour of all proteins. For high ionic strengths and pH values higher than the isoelectric point (pI) of the contaminant proteins, IgG could be selectively recovered on the top phase. According to these results, a face centred composite design was performed in order to optimise the purification of IgG from the mixture of proteins. The optimal conditions for the isolation of IgG were observed for high concentrations of NaCl and low concentrations of both phase forming components. The best purification was achieved using an ATPS containing 8% (w/w) PEG 3350, 10% (w/w) phosphate pH 6 and 15% (w/w) NaCl. A recovery yield of 101+/-7%, a purity of 99+/-0% and a yield of native IgG of 97+/-4% were obtained. Back extraction studies of IgG to a new phosphate phase were performed and higher yields were obtained using 10% phosphate buffer at pH 6. The total extraction yield was 76% and the purity 100%.  相似文献   

7.
Plasmid DNA (pDNA) is purified directly from alkaline lysis-derived Escherichia coli (E. coli) lysates by phenyl boronate (PB) chromatography. The method explores the ability of PB ligands to bind covalently, but reversibly, to cis-diol-containing impurities like RNA and lipopolysaccharides (LPS), leaving pDNA in solution. In spite of this specificity, cis-diol free species like proteins and genomic DNA (gDNA) are also removed. This is a major advantage since the process is designed to keep the target pDNA from binding. The focus of this paper is on the study of the secondary interactions between the impurities (RNA, gDNA, proteins, LPS) in a pDNA-containing lysate and 3-amino PB controlled pore glass (CPG) matrices. Runs were designed to evaluate the role of adsorption buffer composition, feed type (pH, salt content), CPG matrix and sample pretreatment (RNase A, isopropanol precipitation). Water was chosen as the adsorption buffer over MgCl(2) solutions since it maximised pDNA yield (96.2±4.9%) and protein removal (61.3±3.0%), while providing for a substantial removal of RNA (65.5±3.5%) and gDNA (44.7±14.1%). Although the use of pH 3.5 maximised removal of impurities (~75%), the best compromise between plasmid yield (~96%) and RNA clearance (~60-70%) was obtained for a pH of 5.2. Plasmid yield was maximal (>96%) when the concentration of acetate and potassium ions in the incoming lysate feed were 1.7 M and 1.0 M, respectively. The pre-treatment of lysates with RNase A deteriorated the performance since the resulting oligoribonucleotides lack the cis-diol group at their 3' termini. Overall, the results support the idea that charge transfer interactions between the boron atom at acidic pH and electron donor groups in the aromatic bases of nucleic acids and side residues of proteins are responsible for the non-specific removal of gDNA, RNA and proteins.  相似文献   

8.
We have evaluated a process incorporating aqueous two-phase extraction, hydrophobic interaction chromatography (HIC) and size-exclusion chromatography (SEC) for the purification of human immunoglobulin G (IgG) from a Chinese hamster ovary (CHO) cell supernatant. These unit operations were chosen not only for allowing the removal of target impurities but also for facilitating the integration of different process units without the need for any conditioning step. Extraction in aqueous two-phase systems (ATPSs), composed of polyethylene glycol (PEG) and sodium citrate, allowed the concentration of the antibodies in the citrate-rich phase and the removal of the most hydrophobic compounds in the PEG-rich phase. An ATPS composed of 10% (w/w) PEG 3350 and 12% (w/w) citrate, at pH 6, allowed the recovery of IgG with a 97% yield, 41% HPLC purity and 72% protein purity. This bottom phase was then directly loaded on a phenyl-Sepharose HIC column. This intermediate purification step allowed the capture of the antibodies using a citrate mobile phase with 99% of the antibody recovered in the elution fractions, with 86% HPLC purity and 91% protein purity. Finally, SEC allowed the final polishing by removing IgG aggregates. HIC-eluted fractions were directly injected in a Superose 6 size-exclusion column affording a 100% pure IgG solution with 90% yield.  相似文献   

9.
Single-stage and multi-stage strategies have been evaluated and compared for the purification of human antibodies using liquid–liquid extraction in aqueous two-phase systems (ATPSs) composed of polyethylene glycol 3350 (PEG 3350), dextran, and triethylene glycol diglutaric acid (TEG-COOH). The performance of single-stage extraction systems was firstly investigated by studying the effect of pH, TEG-COOH concentration and volume ratio on the partitioning of the different components of a Chinese hamster ovary (CHO) cells supernatant. It was observed that lower pH values and high TEG-COOH concentrations favoured the selective extraction of human immunoglobulin G (IgG) to the PEG-rich phase. Higher recovery yields, purities and percentage of contaminants removal were always achieved in the presence of the ligand, TEG-COOH. The extraction of IgG could be enhanced using higher volume ratios, however with a significant decrease in both purity and percentage of contaminants removal. The best single-stage extraction conditions were achieved for an ATPS containing 1.3% (w/w) TEG-COOH with a volume ratio of 2.2, which allowed the recovery of 96% of IgG in the PEG-rich phase with a final IgG concentration of 0.21 mg/mL, a protein purity of 87% and a total purity of 43%. In order to enhance simultaneously both recovery yield and purity, a four stage cross-current operation was simulated and the corresponding liquid–liquid equilibrium (LLE) data determined. A predicted optimised scheme of a counter-current multi-stage aqueous two-phase extraction was hence described. IgG can be purified in the PEG-rich top phase with a final recovery yield of 95%, a final concentration of 1.04 mg/mL and a protein purity of 93%, if a PEG/dextran ATPS containing 1.3% (w/w) TEG-COOH, 5 stages and volume ratio of 0.4 are used. Moreover, according to the LLE data of all CHO cells supernatant components, it was possible to observe that most of the cells supernatant contaminants can be removed during this extraction step leading to a final total purity of about 85%.  相似文献   

10.
In this study, the interplay of two linked equilibria is examined, one concerning an aqueous two-phase system (ATPS) composed of poly(ethylene glycol) (PEG) and salt employed to partition plasmid DNA (pDNA), and the other a potential structural transition of pDNA depending on PEG and salt concentration and other system parameters. The boundary conditions for pDNA partitioning are set by PEG and salt concentrations, PEG molecular weight, pH, and temperature. While investigating these parameters, it was found that a small increase/decrease of the respective values led to a drastic and significant change in pDNA behavior. This behavior could be attributed to a coil-globule transition of the pDNA triggered by the respective phase conditions. The combination of this structural change, aggregation effects linked to the transition process, and the electrostatic potential difference found in PEG-salt systems thus offers a sensitive way to separate nucleic acid forms on the basis of their unique property to undergo coil-globule transitions under distinct system properties.  相似文献   

11.
Aqueous two-phase systems for protein separation: a perspective   总被引:1,自引:0,他引:1  
Aqueous two-phase systems (ATPS) that are formed by mixing a polymer (usually polyethylene glycol, PEG) and a salt (e.g. phosphate, sulphate or citrate) or two polymers and water can be effectively used for the separation and purification of proteins. The partitioning between both phases is dependent on the surface properties of the proteins and on the properties of the two phase system. The mechanism of partitioning is complex and not very easy to predict but, as this review paper shows, some very clear trends can be established. Hydrophobicity is the main determinant in the partitioning of proteins and can be measured in many different ways. The two methods that are more attractive, depending on the ATPS used (PEG/salt, PEG/polymer), are those that consider the 3-D structure and the hydrophobicity of AA on the surface and the one based on precipitation with ammonium sulphate (parameter 1/m*). The effect of charge has a relatively small effect on the partitioning of proteins in PEG/salt systems but is more important in PEG/dextran systems. Protein concentration has an important effect on the partitioning of proteins in ATPS. This depends on the higher levels of solubility of the protein in each of the phases and hence the partitioning observed at low protein concentrations can be very different to that observed at high concentrations. In virtually all cases the partition coefficient is constant at low protein concentration (true partitioning) and changes to a different constant value at a high overall protein concentration. Furthermore, true partitioning behavior, which is independent of the protein concentration, only occurs at relatively low protein concentration. As the concentration of a protein exceeds relatively low values, precipitation at the interface and in suspension can be observed. This protein precipitate is in equilibrium with the protein solubilized in each of the phases. Regarding the effect of protein molecular weight, no clear trend of the effect on partitioning has been found, apart from PEG/dextran systems where proteins with higher molecular weights partitioned more readily to the bottom phase. Bioaffinity has been shown in many cases to have an important effect on the partitioning of proteins. The practical application of ATPS has been demonstrated in many cases including a number of industrial applications with excellent levels of purity and yield. This separation and purification has also been successfully used for the separation of virus and virus-like particles.  相似文献   

12.
The aggregation of the cationic polymer-plasmid DNA complexes of two commonly used polymers, polyethyleneimine (PEI) and poly-l-lysine (PLL) were systematically compared. The complexation was studied in 5% glucose solution at 25 degrees C using dynamic light scattering and isothermal titration calorimetry. The aggregation of the complexes was controlled by addition of the surfactant polyoxyethylene stearate (POES). The stability of the complexes was evaluated using dextran sulphate (DS) as relaxing agent. The relaxation of the complexes in the presence of DS was studied using agarose gel electrophoresis. This study elucidates the role of surfactant in controlling the size of the PEI/pDNA complex and reveals the differences of the two polymers as complexing agents.  相似文献   

13.
崔亮  李洋  侯小东  宫文娟  徐宇虹  曹阿民 《化学学报》2007,65(19):2181-2186
采用液相多肽合成法制备得到窄分子量分布、结构可控的生物相容性聚乙二醇嵌段共聚树枝状聚赖氨酸阳离子功能大分子(PEG-b-Dendritic PLL). 运用1H NMR核磁共振、凝胶电泳以及荧光淬灭滴定手段对所得阳离子两嵌段大分子的化学结构及其与质粒DNA (pDNA)结合作用与复合行为进行了研究. 结果表明聚乙二醇嵌段树枝状聚赖氨酸与pDNA分子可以在缓冲溶液中形成稳定的胶束, pDNA与阳离子树枝赖氨酸嵌段通过静电相互作用形成胶束核, 其水溶性聚乙二醇嵌段形成水溶性胶束壳, 提高了阳离子大分子/pDNA复合胶束的稳定性. 同时发现随着阳离子嵌段树枝状赖氨酸代数的增加, 阳离子两嵌段大分子与pDNA的结合作用增强, 有利于其作为基因转染生物功能载体的应用.  相似文献   

14.
《Fluid Phase Equilibria》2004,219(2):195-203
The partitioning behavior of four amino acids, cysteine, phenylalanine, methionine, and lysine in 15 aqueous two-phase systems (ATPSs) with different polyethylene glycol (PEG) molecular weights and phosphate buffers has been studied in the present paper. The phase diagrams of the systems are investigated together with the effect of the PEG molecular weight and pH of the phosphate solutions. The composition of these systems and some parameters such as density and refractive index are determined. The influences of salts in ATPSs, side chain structure of the amino acids, pH of ATPSs, and the PEG molecular weight on the distribution ratios of the amino acids have been studied. This work is useful for the purification of amino acids and the separation of some proteins whose main surface exposed amino acid residues are these four amino acids, respectively.  相似文献   

15.
Distribution coefficients for a variety of proteins and certain other biomolecules (peptides, amino acids, and carbohydrates) (overall 27 different solutes) were measured in aqueous two-phase systems (ATPSs) dextran (Dex)–polyethylene glycol (PEG) and Dex–Ucon 50-HB-5100 (Ucon—a random copolymer of ethylene glycol and propylene glycol) both containing 0.15 M NaCl in 0.01 M phosphate buffer, pH 7.4, at 23 °C. Distribution coefficients of some selected solutes were also measured in the above two-phase systems at three different polymer concentrations for each system. It was established that the distribution coefficients for all the proteins examined in the ATPSs are correlated according to the so-called Collander linear equation.  相似文献   

16.
Wu C  Wang J  Wang H  Pei Y  Li Z 《Journal of chromatography. A》2011,1218(48):8587-8593
Compared with the conventional ionic liquids, amino acid ionic liquids are more biodegradable and biocompatible, and can enhance stability of biomaterials. In this work, amino acid ionic liquids 1-butyl-3-methylimidazolium L-serine ([C(4)mim][Ser]), 1-butyl-3-methylimidazolium glycine ([C(4)mim][Gly]), 1-butyl-3-methylimidazolium L-alanine ([C(4)mim][Ala]) and 1-butyl-3-methylimidazolium L-leucine ([C(4)mim][Leu]) have been synthesized. These ionic liquids are found to form aqueous two-phase systems (ATPSs) by the salted-out of K(3)PO(4) in aqueous solutions. Phase diagram of the ATPSs and the Gibbs energies of transfer of methylene group from the bottom salt-rich phase to the top ionic liquid-rich phase have been determined at 298.15K and pH 14, and the effect of anionic structure of the ionic liquids on phase formation of the ATPSs and the relative hydrophobicity between the top and the bottom phases are then examined. In order to understand the effect of relative hydrophobicity of the phases in equilibrium in the ATPSs on the extraction/separation capability of biomolecules, the partition coefficients of cytochrome-c (as a model biomolecule) in the ATPSs are measured by spectrophotometry. It is suggested that hydrophobic interactions are mainly responsible for the higher partition coefficients of cytochrome-c in aqueous two-phase systems at pH 14, and the extraction and separation capacity of biomolecules can be improved by the modulation of the relative hydrophobicity of the phases and/or the pH of the system.  相似文献   

17.
A modified form of the UNIQUAC-NRF activity coefficient model was used to study the phase behaviour of the aqueous two-phase systems (ATPSs) of polyethylene glycol (PEG) and dextran (DEX) with different molecular weights at various temperatures. In the proposed model, a ternary interaction parameter was added to the expression for the excess Gibbs free energy and, in turn, to the corresponding activity coefficient rendered by the UNIQUAC-NRF model. The combinatorial part of the new model takes the same form as that of the original UNIQUAC model and the residual part considers the nonrandomness and also the binary and the ternary interactions among the molecules in mixtures of PEG, DEX, and water. The results show that the new model can more accurately correlate the experimental data for the systems studied in this work than those obtained from the original UNIQUAC and the UNIQUAC-NRF activity coefficient models. In order to favourably compare the results the same minimisation procedure and the same experimental data were used for the models studied in this work. The results for the Root Mean Square Deviations (RMSD) produced by the three UNIQUAC-based models are also reported.  相似文献   

18.
The partition behaviors of some dyes, anthraquinones, and tanshiones in two kinds of aqueous two-phase systems (ATPSs) have been investigated. The partition constants (K) of ionic dyes and rhein in the first kind of ATPSs are dependent on hydrophobic and electrostatic interactions. A correlation for K as a function of the concentration ratio of total surfactant ions and surface net charge ratio of aggregates between the two coexisting phases has been proposed. Almost 100% of water-insoluble electroneutral extract accumulates in surfactant-rich phase of the first kind of ATPS due to hydrophobic interaction. K of emodin in the second kind of ATPSs is correlated by the same model regardless of electrostatic interaction.  相似文献   

19.
Poly(ethylene imine) (PEI) is an established non-viral vector system for the delivery of various nucleic acids in gene therapy applications. Polyelectrolyte complexes between both compounds, so called polyplexes, are formed by electrostatic interactions of oppositely charged macromolecules and are thought to facilitate uptake into cells. Such complexes form spontaneously and on lab scale they are usually prepared by mixing solutions through pipetting. Hence, an optimized preparation procedure allowing the scale-up of well-defined polyplexes would be of general interest. We developed a new method for microfluidic polyplex preparation on a chip. The mixing behaviour within the microfluidic channels was evaluated. Polyplexes with PEI and plasmid DNA were prepared using this method, in comparison to the standard pipetting procedure. Sizes and polydispersity indices of these complexes were examined. The influence of various parameters on the polyplex characteristics and the suitability of this production procedure for other PEI-based complexes were also evaluated. It was shown that polyplexes could easily be prepared by microfluidics. The ratio of PEI to DNA was most important for the formation of small polyplexes, whereas other parameters had minor influence. The size of polyplexes prepared with this new method was observed to be relatively constant between 140 nm and 160 nm over a wide range of complex concentrations. In comparison, the size of polyplexes prepared by pipetting (approximately 90 nm to 160 nm) varied considerably. The versatility of this system was demonstrated with different (targeted) PEI-based vectors for the formation of complexes with pDNA and siRNA. In conclusion, polyplex preparation using microfluidics could be a promising alternative to the standard pipetting method due to its suitability for preparation of well-defined complexes with different compositions over a wide range of concentrations.  相似文献   

20.
Cationic polymers bind DNA and form compacted nanoparticulates (i.e., polyplexes). Polyplexes augment DNA delivery into the cells as a nonviral method of gene therapy. DNA packing and release are the key factors in polyplex-mediated gene delivery, but they are poorly understood due to the lack of physical methods of investigation. We used time-resolved fluorescence spectroscopy to study poly(ethylenimine) (PEI) and poly(L-lysine) (PLL) polyplexes. Analysis of fluorescence lifetimes and time-resolved spectra revealed that DNA exists in several different states in PEI polyplexes and only in one tightly bound state in PLL polyplexes. The observed difference in the nature of the polyplexes may explain why PEI releases DNA more easily than PLL even though both polycations condense DNA effectively. The present method utilizing time-resolved fluorescence spectroscopy gives information on the specific interactions between DNA and the cationic polymers in the polyplexes. This kind of information is very important in the development of biologically effective nonviral systems for DNA delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号