首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oscillatory motion of natural convection in a porous medium has been investigated experimentally using a Hele-Shaw cell technique. The cell has been heated on the lower half and cooled on the upper half along the same vertical sidewall. Flows have been visualized using the pH indicator method. Photographs of natural convection patterns as well as average Nusselt number data have been presented for different Rayleigh numbers. Oscillatory motion of natural convection has been observed for large enough Rayleigh numbers and the critical Rayleigh number has been estimated to be between 120 and 450. Scaling analysis has been conducted to understand the heat transfer and the oscillating mechanism. According to the scaling analysis, it has been found that the average Nusselt number is proportional to the square root of the Rayleigh number, and that the oscillation frequency is proportional to the Rayleigh number. Obtained experimental data support the scaling analysis.  相似文献   

2.
Buoyancy-driven convection of a viscoelastic fluid saturated in an open-top porous square box is studied based on a modified Darcy's law. The results are compared with those for a Newtonian fluid under the same boundary conditions and those for the viscoelastic fluid under a closed-top boundary. In particular, the critical Darcy–Rayleigh number Ra for onset of convection is determined first by using the linear stability theory. Then the effects of the relaxation time and the retardation time of the viscoelastic fluid on the heat transfer rate and the flow pattern are investigated numerically. The results reveal some interesting properties of thermal convection for the viscoelastic fluid. The relaxation time makes the fluid easier to destabilize while the retardation time tends to stabilize the fluid motion in the porous medium, and larger heat transfer rate can be achieved with larger value of the relaxation time and decreased retardation time. Furthermore, larger relaxation time facilitates earlier bifurcation of the flow pattern as Ra increases, but bifurcation can be postponed with increased retardation time. For larger ratio of relaxation time over retardation time, the flow pattern is more complicated and the frequency of flow oscillation also increases. Finally, large ratio of relaxation time over retardation time can make the open-top boundary impermeable due to the viscoelastic effect on the fluid.  相似文献   

3.
The objective of this study is to extend the attention of the incompressible smoothed particle hydrodynamics method (ISPH) in the heat transfer field. The ISPH method for the natural convection heat transfer under the Boussinesq approximation in various environments: pure-fluid, nanofluid, and non-Darcy porous medium is introduced. We adopted the improved analytical method for calculating the kernel renormalization factor and its gradient based on a quintic kernel function for the wall boundary treatment in the ISPH method. The proposed method requires no dummy particle layer to meet the impermeability condition and makes the heat flux over the wall boundary easy to implement. We performed four different numerical simulations of natural convection in cavities with increasing complexity in modeling and implementation: the natural convection in a square cavity with constant differentially heated wall temperature, natural convection with the heat flux from the bottom wall for a wide range of Rayleigh numbers, natural convection in a non-Darcy porous cavity fully filled with nanofluid in different flow regimes, and natural convection in a partially layered porous cavity. The results showed excellent agreement with results from literatures and the in-house P1–P1 finite element method code.  相似文献   

4.
A linear stability analysis is performed to analyze bioconvection in a dilute suspension of gyrotactic microorganisms in horizontal shallow fluid layer cooling from below and saturated by a porous medium, in the rigid boundary case. It is established that due to cooling from below thermally stratified layer is stabilized, which opposes the development of bioconvection and the situations for oscillatory convection may take place. The stability criterion is obtained in terms of thermal Rayleigh number, bioconvection Rayleigh number, gyrotactic number, bioconvection Peclet number, measure of cell eccentricity, Prandtl number, and Lewis number. It is observed that the presence of porous medium results in decrease of the magnitude of critical bioconvection Rayleigh number in comparison with its non-existence; hence due to porous effect, the system becomes less stable.  相似文献   

5.
The onset of convection in a rarefield gas saturating a horizontal layer of a porous medium has been investigated using both Darcy and Brinkman models. It is assumed that due to rarefaction both velocity slip and temperature jump exist at the boundaries. The results show that (i) when the degree of rarefaction increases the critical Rayleigh number as well as the critical wave number for the onset of convection increases, (ii) stabilizing effect of temperature jump is more than that of velocity slip, (iii) Darcy model is seen to be the most stable one when compared to Brinkman model or the pure gaseous layer (i.e. in the absence of porous medium).  相似文献   

6.
Siddheshwar  P. G.  Siddabasappa  C. 《Meccanica》2020,55(9):1763-1780

Stability analysis of free convection in a liquid-saturated sparsely-packed porous medium with local-thermal-non-equilibrium (LTNE) effect is presented. For the vertical boundaries free–free, adiabatic and rigid–rigid, adiabatic are considered while for horizontal boundaries it is the stress-free, isothermal and rigid–rigid, isothermal boundary combinations we consider. From the linear theory, it is apparent that there is advanced onset of convection in a shallow enclosure followed by that in square and tall enclosures. Asymptotic analysis of the thermal Rayleigh number for small and large values of the inter-phase heat transfer coefficient is reported. Results of Darcy–Bénard convection (DBC) and Rayleigh–Bénard convection can be obtained as limiting cases of the study. LTNE effect is prominent in the case of Brinkman–Bénard convection compared to that in DBC. Using a multi-scale method and by performing a non-linear stability analysis the Ginzburg–Landau equation is derived from the five-mode Lorenz modal. Heat transport is estimated at the lower plate of the channel. The effect of the Brinkman number, the porous parameter and the inter-phase heat transfer coefficient is to favour delayed onset of convection and thereby enhanced heat transport while the porosity-modified ratio of thermal conductivities shows the opposite effect.

  相似文献   

7.
Viscous dissipation effects in the problem of a fully-developed combined free and forced convection flow between two symmetrically and asymmetrically heated vertical parallel walls filled with a porous medium is analyzed. The equation of motion contains the modified Rayleigh number for a porous medium and the small-order viscous dissipation parameter. Particular attention is given to the solutions near the critical Rayleigh numbers at which infinite flow rates are predicted. Information concerning the multiplicity of solutions at critical Rayleigh numbers is also deduced from perturbation solutions of the governing equation.  相似文献   

8.
This note focuses on Kladias and Prasad's claim that the critical Rayleigh number for the onset of Bénard convection in an infinite horizontal porous layer increases as the Prandtl number decreases, and argues that the critical Rayleigh number (Rac) depends only on the Darcy number (Da), as linear stability analysis indicates. The two-dimensional steady-convection problem is then solved numerically to document the convection heat transfer effect of the Rayleigh number, Darcy number, Prandtl number, and porosity. The note concludes with an empirical correlation for the overall Nusselt number, which shows the effect of Prandtl number at above-critical Rayleigh numbers. The correlation is consistent with the corresponding correlation known for Bénard convection in a pure fluid.  相似文献   

9.
The problem is considered of thermal convection in a saturated porous medium contained in an infinite vertical channel with differentially heated sidewalls. The theory employed allows for different solid and fluid temperatures in the matrix. Nonlinear energy stability theory is used to derive a Rayleigh number threshold below which convection will not occur no matter how large the initial data. A generalized nonlinear analysis is also given which shows convection cannot occur for any Rayleigh number provided the initial data is suitably restricted.  相似文献   

10.
Stability analysis of double-diffusive convection for viscoelastic fluid with Soret effect in a porous medium is investigated using a modified-Maxwell-Darcy model. We use the linear stability analysis to investigate how the Soret parameter and the relaxation time of viscoelastic fluid effect the onset of convection and the selection of an unstable wavenumber. It is found that the Soret effect is to destabilize the system for oscillatory convection. The relaxation time also enhances the instability of the system. The effects of Soret coefficient and relaxation time on the heat transfer rate in a porous medium are studied using the nonlinear stability analysis, the variation of the Nusselt number with respect to the Rayleigh number is derived for stationary and oscillatory convection modes. Some previous results can be reduced as the special cases of the present paper.  相似文献   

11.
A numerical simulation of combined natural convection and radiation in a square enclosure heated by a centric circular cylinder and filled with absorbing-emitting medium is presented. The ideal gas law and the discrete ordinates method are used to model the density changes due to temperature differences and the radiation heat transfer correspondingly. The influence of Rayleigh number, optical thickness and temperature difference on flow and temperature fields along with the natural convection, radiation and total Nusselt number at the source surfaces is studied. The results reveal that the radiation heat transfer as well as the optical thickness of the fluid has a distinct effect on the fluid flow phenomena, especially at high Rayleigh number. The heat transfer and so the Nusselt number decreases with increase in optical thickness, while increases greatly with increase in temperature difference. The variation in radiation heat transfer with optical thickness and temperature difference is much more obvious as comparison with convection heat transfer.  相似文献   

12.
The problem of natural convection in an inclined rectangular porous layer enclosure is studied numerically. The enclosure is heated from one side and cooled from the other by a constant heat flux while the two other walls are insulated. The effect of aspect ratio, inclination angle and Rayleigh number on heat transfer is studied. It is found that the enclosure orientation has a considerable effect on the heat transfer. The negative orientation sharply inhibits the convection and consequently the heat transfer and a positive orientation maximizes the energy transfer. The maximum temperature within the porous medium can be considerably higher than that induced by pure conduction when the cavity is negatively oriented. The peak of the average Nusselt number depends on the Rayleigh number and the aspect ratio. The heat transfer between the two thermally active boundaries is sensitive to the effect of aspect ratio. For an enclosure at high or low aspect ratio, the convection is considerably decreased and the heat transfer depends mainly on conduction.  相似文献   

13.
Buoyancy-induced convection arising from a horizontal line heat source embedded in an anisotropic porous medium is investigated analytically. The porous medium is anisotropic is permeability with its principal axes oriented in a direction that is oblique to the gravity vector. Assuming the boundary layer approximation, closed-form exact similarity solutions for both flow and temperature fields are presented and compared with those of isotropic case. Scale analysis is applied to predict the order of magnitudes involved in the boundary layer regime for which the conditions of validity are obtained. Effects of both anisotropic parameters (K* and %) and Rayleigh number RaL are observed to be strongly significant. It is demonstrated that a minimum (maximum) intensity of the thermal convective plume above the line source of heat can be obtained if the porous matrix is oriented with its principal axis with higher permeability parallel (perpendicular) to the vertical direction.  相似文献   

14.
In this paper, oscillatory convection in a horizontal layer of nanofluid in porous medium is studied. For porous medium, Darcy model is applied. A linear stability theory and normal mode analysis method is used to find the solution confined between two free boundaries. The onset criterion for oscillatory convection is derived analytically and graphically. Regimes of oscillatory and non-oscillatory convection for various parameters are derived. The effects of Lewis number, concentration Rayleigh number, Prandtl?CDarcy number (Vadasz Number) and modified diffusivity ratio on the oscillatory convection are investigated graphically. We examine the validity of ??PES?? and concluded that ??PES?? is not valid for the problem.  相似文献   

15.
Two different approaches have been implemented to interpret the existing data in Merrikh and Lage (2005a, in: Pop, Ingham, Transport Phenomena in Porous Media, Elsevier, Oxford) pertinent to the pore-scale simulation of natural convection in a laterally heated square enclosure filled with a fluid bathing discrete, disconnected and conducting solid blocks. Mathematical analysis of the problem based on the least squares method leads us to a Nu-Ra correlation with the solid-to-fluid thermal conductivity ratio and the porous medium permeability as the controlling parameters. In this study, while the porosity is fixed, the permeability is varied by changing either the block size or the number of blocks. Hence, three independent variables N, Ra, and κ being the number of blocks, Rayleigh number, and the conductivity ratio between the solid and the fluid, respectively, affect the overall heat transfer process. Based on a simplified thermal resistance approach, an alternative correlation is proposed to predict the Nusselt number as a function of the aforementioned parameters. Detailed analysis of the results and the expected errors are presented.  相似文献   

16.
Finger type double diffusive convective instability in a fluid-saturated porous medium is studied in the presence of coupled heat-solute diffusion. A local thermal non-equilibrium (LTNE) condition is invoked to model the Darcian porous medium which takes into account the energy transfer between the fluid and solid phases. Linear stability theory is implemented to compute the critical thermal Rayleigh number and the corresponding wavenumber exactly for the onset of stationary convection. The effects of Soret and Dufour cross-diffusion parameters, inter-phase heat transfer coefficient and porosity modified conductivity ratio on the instability of the system are investigated. The analysis shows that positive Soret mass flux triggers instability and positive Dufour energy flux enhances stability whereas their combined influence depends on the product of solutal Rayleigh number and Lewis number. It also reveals that cell width at the convection threshold gets affected only in the presence of both the cross-diffusion fluxes. Besides, asymptotic solutions for both small and large values of the inter-phase heat transfer coefficient and porosity modified conductivity ratio are found. An excellent agreement is found between the exact and asymptotic solutions.  相似文献   

17.
 The effect of time-periodic temperature/gravity modulation at the onset of convection in a Boussinesq fluid-saturated anisotropic porous medium is investigated by making a linear stability analysis. Brinkman flow model with effective viscosity larger than the viscosity of the fluid is considered to give a more general theoretical result. The perturbation method is applied for computing the critical Rayleigh and wave numbers for small amplitude temperature/gravity modulation. The shift in the critical Rayleigh number is calculated as a function of frequency of the modulation, viscosity ratio, anisotropy parameter and porous parameter. We have shown that it is possible to advance or delay the onset of convection by time-periodic modulation of the wall temperature and to advance convection by gravity modulation. It is also shown that the small anisotropy parameter has a strong influence on the stability of the system. The effect of viscosity ratio, anisotropy parameter, the porous parameter and the Prandtl number is discussed. Received on 28 July 2000 / Published online: 29 November 2001  相似文献   

18.
The onset of periodic and aperiodic convection in a binary nanofluid saturated rotating porous layer is studied considering constant flux boundary conditions. The porous medium obeys Darcy’s law, while the nanofluid envisages the effects of the Brownian motion and thermophoresis. The Rayleigh numbers for stationary and oscillatory convection are obtained in terms of various non-dimensional parameters. The effect of the involved physical parameters on the aperiodic convection is studied graphically. The results are validated in comparison with the published literature in limiting cases of the present study.  相似文献   

19.
The onset of convection and its nonlinear regimes in a heated from below two-layer system consisting of a horizontal pure fluid layer and porous medium saturated by the same fluid is studied under the conditions of static gravitational field. The problem is solved numerically by the finite-difference method. The competition between the long-wave and short-wave convective modes at various ratios of the porous layer to the fluid layer thicknesses is analyzed. The data on the nature of convective motion excitation and flow structure transformation are obtained for the range of the Rayleigh numbers up to quintuple supercriticality. It has been found that in the case of a thick porous layer the steady-state convective regime occurring after the establishment of the mechanical equilibrium becomes unstable and gives way to the oscillatory regime at some value of the Rayleigh number. As the Rayleigh number grows further the oscillatory regime of convection is again replaced by the steady-state convective regime.  相似文献   

20.
The stability of a horizontal fluid saturated anisotropic porous layer heated from below and cooled from above is examined analytically when the solid and fluid phases are not in local thermal equilibrium. Darcy model with anisotropic permeability is employed to describe the flow and a two-field model is used for energy equation each representing the solid and fluid phases separately. The linear stability theory is implemented to compute the critical Rayleigh number and the corresponding wavenumber for the onset of convective motion. The effect of thermal non-equilibrium and anisotropy in both mechanical and thermal properties of the porous medium on the onset of convection is discussed. Besides, asymptotic analysis for both very small and large values of the interphase heat transfer coefficient is also presented. An excellent agreement is found between the exact and asymptotic solutions. Some known results, which correspond to thermal equilibrium and isotropic porous medium, are recovered in limiting cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号