首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
柔性圆柱涡激振动流体力系数识别及其特性   总被引:2,自引:0,他引:2  
涡激振动是诱发海洋立管、浮式平台系泊缆和海底悬跨管道等柔性圆柱结构疲劳损伤的重要因素.目前,海洋工程中用于柔性圆柱涡激振动预报的流体力系数主要来源刚性圆柱横流向受迫振动的实验数据,存在一定缺陷和误差.本文综合考虑横流向与顺流向振动耦合作用,建立了柔性圆柱涡激振动流体力模型,运用有限元法和最小二乘法确定升力系数、脉动阻力系数和附加质量系数.为了准确识别柔性圆柱涡激振动流体力系数,设计并开展了拖曳水池模型实验,实验用柔性圆柱模型的质量比为1.82,长径比为195.5.通过与刚性圆柱流体力系数对比,深入分析了柔性圆柱流体力系数的特性.结果表明:柔性圆柱在一阶模态控制区,流体力系数随约化速度变化趋势与刚性圆柱大致相似;二阶模态控制区,升力系数和脉动阻力系数显著增大;附加质量系数在响应频率较低时与振动位移的相关性增强;当响应频率较低时,振动位移较大区域为能量耗散区,当响应频率较高时,振动位移较大区域为能量输入区.  相似文献   

2.
通过模型实验和数值模拟计算,研究了带有涡激振动抑制罩的圆截面柱体的水动力特性.模型实验主要测试了柱体上附加谐波型和类圆锥型涡激振动抑制罩的单摆结构在不同流速下发生涡激振动的性质;数值模拟则针对谐波型和圆锥型扰动,在雷诺数Re为102到105范围内,研究其水动力参数,如阻力、升力和涡脱落频率等,随扰动波长和波动强度的变化.模型实验结果表明,在直圆柱开始发生共振的流速下,带抑制罩的柱体的振幅显著降低,而在更高流速下则显著增大.数值模拟结果表明,谐波型和圆锥型扰动具有相似的水动力特性;且在不同Re时,阻力、升力和涡脱落频率具有相似的变化规律;随波动强度的增大,阻力一般逐渐增大,升力则在多数情况下先减小而后增大,而涡脱落频率一般逐渐减小.   相似文献   

3.
采用浸入边界法对细长柔性圆柱在线性剪切流条件下的涡激振动进行三维数值模拟.细长柔性圆柱振动采用三维索模型模拟,其两端铰接,质量比为6,长细比为50,无量纲顶张力为496.来流为线性剪切流,剪切率从0到0.024变化,最大雷诺数为250.研究发现:剪切流作用下柔性立管横流向振动表现为驻波模式,而顺流向振动表现为行波与驻波混合模式.随着剪切率增大,振动频谱呈现多频响应,振动能量逐渐向低频转移.阻力系数平均值随着展向变化,脉动阻力系数和升力系数的均方根值均表现为"双峰"模式.流固能量传递系数沿立管轴向的分布表明,振动激励区集中于高流速区,而振动阻尼区多位于低流速区.剪切率较小时,圆柱的泻涡为平行交叉模式;剪切率较大时,圆柱的泻涡为倾斜泻涡模式,且由于泻涡频率沿立管轴向变化,尾流发生涡裂现象,形成泻涡频率不同的胞格结构.  相似文献   

4.
大柔性圆柱体两自由度涡激振动试验研究   总被引:4,自引:0,他引:4  
基于模型试验研究了柔性圆柱体两自由度涡激振动问题, 研究了顺流向涡激振动和横向涡激振动的频率与振幅关系, 提出了考虑流固耦合的两自由度涡激振动非线性分析模型. 研究表明, 在不同的流速(雷诺数)范围, 柔性圆柱体顺流向涡激振动与横向涡激振动的频率比和幅值比是不同的; 在非锁定区, 圆柱体的顺流向振动频率与横向振动频率相同, 在锁定区, 圆柱体的顺流向振动频率是横向振动频率的两倍; 在非锁定区, 顺流向振幅与横向振幅比约为1, 而在锁定区, 顺流向振幅与横向振幅比约为1/3~2/3.   相似文献   

5.
传统CFD方法在振动钝体绕流计算中常借助动网格技术,网格再生任务繁重。针对于此,本文利用可在静止网格中计算动边界绕流问题的浸入边界算法(IBM),编写数值模拟程序,分别对竖向强迫正弦振动方柱(Re=UD/v=103、振幅恒定、振动频率变化)以及桥梁断面(Re=UB/v=7.5×103、振幅、振动频率均变化)展开气动特性和流场特征结构分析。初步研究结果表明,振幅恒定为方柱高度的14%时,其涡脱锁定区长度为0.06~0.2,锁定区后端(Stc0.2)振动方柱涡脱频率回归静止涡脱频率;不同振幅下的桥梁断面阻力系数均在静止涡脱频率处产生峰值,桥梁断面升力系数则在此处均出现归零效应,且振幅越大,归零效应愈明显。  相似文献   

6.
基于不可压缩纳维-斯托克斯(Navier-Stokes)方程和改进的延迟脱体涡模拟方法(improved delayed detached edd ysimulation method,IDDES),数值研究了深海多立柱浮式平台在海流作用下的涡激运动响应特性.以张力腿平台为对象,计算了该平台在0°,22.5°和45°流向角下的横向和艏摇涡激运动响应,分析了涡激运动响应幅度、频率比随约化速度的变化规律,研究了涡激运动响应能量的分布趋势.数值预报结果与模型实验数据吻合良好,证实了数值模型的有效性;研究发现,当约化速度介于7.0和14.0之间时,横向运动发生锁频,运动幅值稳定在0.2D~0.4D(D为立柱宽)之间,而艏摇涡激运动和约化速度呈线性递增关系;在横向运动锁频区间内,由于艏摇激振力矩主要受升力主导,艏摇频率与横向运动频率相同;相对于0°来流,22.5°和45°流向下的涡激运动频率更高,但艏摇运动能量仅为0°流向角下的10%.基于计算结果,进一步分析了多立柱平台涡激运动中的三维流场结构.   相似文献   

7.
不同剪切率来流作用下柔性圆柱涡激振动数值模拟   总被引:1,自引:0,他引:1  
采用浸入边界法对细长柔性圆柱在线性剪切流条件下的涡激振动进行三维数值模拟。细长柔性圆柱振动采用三维索模型模拟,其两端铰接,质量比为6,长细比为50,无量纲顶张力为496。来流为线性剪切流,剪切率从0到0.024变化,最大雷诺数为250。研究发现:剪切流作用下柔性立管横流向振动表现为驻波模式,而顺流向振动表现为行波-驻波混合模式。随着剪切率增大,振动频谱呈现多频响应,振动能量逐渐向低频转移。阻力系数平均值随着展向变化,脉动阻力系数和升力系数的均方根值均表现为“双峰”模式。流固能量传递系数沿立管轴向的分布表明,振动激励区集中于高流速区,而振动阻尼区多位于低流速区。剪切率较小时,圆柱的泻涡为平行交叉模式;剪切率较大时,圆柱的泻涡为倾斜泻涡模式,且由于泻涡频率沿立管轴向变化,尾流发生涡裂现象,形成泻涡频率不同的胞格结构。   相似文献   

8.
圆柱绕流涡脱落诱发较大的振动和声,如何有效地抑制值得关注.利用大涡模拟技术求解了Navier-Stokes方程,得到了涡脱落频率,升力脉动幅值及平均阻力系数.计算表明二维模拟不能体现流动基本特征,三维计算与实验吻合较好.为了抑制涡脱落,在直径为D的圆柱表面装入间距为1D,直径为0.0167D的O型环.通过升力、速度谱分析以及柱向横截面流场分析可知,在光滑圆柱外表面加入O型环能诱发流体边界层分离,有效地抑制涡脱落现象,升力脉动和观测点速度脉动幅值几乎完全消失,阻力系数也略微降低,适合在实际工程中采用.  相似文献   

9.
带整流罩隔水管流场特性的大涡模拟研究   总被引:1,自引:0,他引:1  
梁健  刘成文  李兆敏 《力学季刊》2020,41(1):197-205
为了深入揭示整流罩抑制涡激振动的机理,采用CFD软件FLUENT,结合大涡模拟方法,分别对附加整流罩前后隔水管模型的绕流流场进行模拟,将附加整流罩前后隔水管周围的流场特性、升力系数、阻力系数及其频谱特性等进行对比分析.结果表明,整流罩能有效抑制隔水管尾流区的漩涡脱落,隔水管背部的压力升高,升力系数和阻力系数显著降低,从而抑制了隔水管的涡激振动.  相似文献   

10.
以大攻角下增加升力、减小阻力为目的,采用计算流体力学方法,针对在有限展长的三维机翼模型上进行的局部开口吹气控制进行了数值研究。利用结构网格及相应的非定常流计算方法对吹气流动控制进行了数值仿真,分析了吹气动量系数、吹气位置等参数(重点研究吹气口展向位置)对气动特性的影响。研究表明:应用吹气技术可获得较好的气动特性,且能延迟边界层的分离;当吹气动量系数为0.000216且吹气口位于0.2c~0.205c时,二维模型升力系数增加8.2%,阻力系数减小17.2%;当开口长度是有限三维模型翼展的1/5、吹气动量系数为0.003,并在z为2.1~2.4m处引入吹气控制时,三维模型的升力系数增加22.6%,升阻比增加9.5%;对于本文的三维有限翼展机翼模型,当吹气口位于z为2.1~2.4m时可以获得最好的控制效果。  相似文献   

11.
In this paper, hydrodynamic force coefficients and wake vortex structures of uniform flow over a transversely oscillating circular cylinder beneath a free surface were numerically investigated by an adaptive Cartesian cut-cell/level-set method. At a fixed Reynolds number, 100, a series of simulations covering three Froude numbers, two submergence depths, and three oscillation amplitudes were performed over a wide range of oscillation frequency. Results show that, for a deeply submerged cylinder with sufficiently large oscillation amplitudes, both the lift amplitude jump and the lift phase sharp drop exist, not accompanied by significant changes of vortex shedding timing. The near-cylinder vortex structure changes when the lift amplitude jump occurs. For a cylinder oscillating beneath a free surface, larger oscillation amplitude or submergence depth causes higher time-averaged drag for frequency ratio (=oscillation frequency/natural vortex shedding frequency) greater than 1.25. All near-free-surface cases exhibit negative time-averaged lift the magnitude of which increases with decreasing submergence depth. In contrast to a deeply submerged cylinder, occurrences of beating in the temporal variation of lift are fewer for a cylinder oscillating beneath a free surface, especially for small submergence depth. For the highest Froude number investigated, the lift frequency is locked to the cylinder oscillation frequency for frequency ratios higher than one. The vortex shedding mode tends to be double-row for deep and single-row for shallow submergence. Proximity to the free surface would change or destroy the near-cylinder vortex structure characteristic of deep-submergence cases. The lift amplitude jump is smoother for smaller submergence depth. Similar to deep-submergence cases, the vortex shedding frequency is not necessarily the same as the primary-mode frequency of the lift coefficient. The frequency of the induced free surface wave is exactly the cylinder oscillation frequency. The trends of wave length variation with the Froude number and frequency ratio agree with those predicted by the linear theory of small-amplitude free surface waves.  相似文献   

12.
High-frequency limit-cycle oscillations of an airfoil at low Reynolds number are studied numerically. This regime is characterized by large apparent-mass effects and intermittent shedding of leading-edge vortices. Under these conditions, leading-edge vortex shedding has been shown to result in favorable consequences such as high lift and efficiencies in propulsion/power extraction, thus motivating this study. The aerodynamic model used in the aeroelastic framework is a potential-flow-based discrete-vortex method, augmented with intermittent leading-edge vortex shedding based on a leading-edge suction parameter reaching a critical value. This model has been validated extensively in the regime under consideration and is computationally cheap in comparison with Navier–Stokes solvers. The structural model used has degrees of freedom in pitch and plunge, and allows for large amplitudes and cubic stiffening. The aeroelastic framework developed in this paper is employed to undertake parametric studies which evaluate the impact of different types of nonlinearity. Structural configurations with pitch-to-plunge frequency ratios close to unity are considered, where the flutter speeds are lowest (ideal for power generation) and reduced frequencies are highest. The range of reduced frequencies studied is two to three times higher than most airfoil studies, a virtually unexplored regime. Aerodynamic nonlinearity resulting from intermittent leading-edge vortex shedding always causes a supercritical Hopf bifurcation, where limit-cycle oscillations occur at freestream velocities greater than the linear flutter speed. The variations in amplitude and frequency of limit-cycle oscillations as functions of aerodynamic and structural parameters are presented through the parametric studies. The excellent accuracy/cost balance offered by the methodology presented in this paper suggests that it could be successfully employed to investigate optimum setups for power harvesting in the low-Reynolds-number regime.  相似文献   

13.
The flow around a stationary circular cylinder modified by two synthetic jets positioned at the mean separation points is numerically studied. The Reynolds number based on the free-stream velocity and the circular cylinder diameter is Re=500. The focus is to present a novel way to suppress the lift fluctuations by changing the vortex shedding mode, and thus particular attention is paid to the interactions between the synthetic jets and wake shear layers and the resulting vortex dynamics. The overall influences of both momentum coefficient and excitation frequency are discussed. In some simulated cases, the vortex lock-on phenomenon is discovered, which causes the typical Kàrmàn type vortex shedding to be converted into the symmetric shedding modes, leading to the complete suppression of lift fluctuations. In other cases, the asymmetric shedding mode still dominates the wake evolution. Detailed vortical evolution for each typical wake pattern is analyzed to reveal the control mechanism. Additionally, the control effectiveness is evaluated, indicating that the present control strategy contributes an effective way to suppress the lift fluctuations and reduce the mean drag.  相似文献   

14.
Fluctuating wind pressures acting on bluff bodies are influenced by approaching turbulence and signature (body-induced) turbulence. For a circular cylinder, the signature turbulence is closely related to the formation of Karman vortex shedding. In this paper, proper orthogonal decomposition (POD) and spectral proper transformation techniques (SPT) are applied to the pressure fluctuations acting on a circular cylinder. The physical relationships between the decomposed modes and vortex shedding are discussed to identify the dominant aerodynamic behavior (lift or drag) and to evaluate its contribution to overall behavior. The effect of Reynolds number (Re) is also addressed. It is found that the application of POD and SPT can separate the along-wind and across-wind effects on the cylinder model in both subcritical and supercritical regimes. In contrast to POD, the SPT mode is formulated in the frequency domain, and the dynamic coherent structures can be defined in terms of amplitude and phase angle, which allows detection of the advection features of vortex shedding. In addition, it is observed that the energy contribution of the shedding induced lift force increases with Re and gradually becomes a dominant aerodynamic force at Reynolds numbers in the supercritical regime.  相似文献   

15.
汪健生  徐亚坤 《计算力学学报》2017,34(1):117-122,129
采用双向流固耦合方法,对带有柔性薄板三维方柱的流场变化特性进行了研究。通过对比单方柱,分析了带有柔性薄板三维方柱阻力系数、升力系数以及斯特劳哈尔数的变化规律。研究表明,在方柱尾流区域附加一柔性薄板可以使其阻力系数降低34.6%,同时其变化幅值大大减小;其升力系数的均方根减小84.8%,流场脉动大幅度减小;斯特劳哈尔数降低79.5%。研究结果表明,在三维方柱后设置柔性薄板可有效抑制涡脱落,从而改善三维方柱的尾流特性。  相似文献   

16.
应用Lattice- Boltzmann方法计算了水平通道内方柱绕流,分析了不同时刻方柱后尾迹的旋涡结构和发展过程,得到了合理的结果;并进一步对Re=100时的圆柱绕流进行了计算,计算得到的升力系数、脱落频率、圆柱表面的压力系数的分布与他人的计算比较吻合。  相似文献   

17.
This paper reports an experimental investigation on the wake of a blunt-based, flat plate subjected to aerodynamic flow vectoring using asymmetric synthetic jet actuation. Wake vectoring was achieved using a synthetic jet placed at the model base 2.5?mm from the upper corner. The wake Reynolds number based on the plate thickness was 7,200. The synthetic jet actuation frequency was selected to be about 75?% the vortex shedding frequency of the natural wake. At this actuation frequency, the synthetic jet delivered a periodic flow with a momentum coefficient, C ??, of up to 62?%. Simultaneous measurements of the streamwise and transverse components of the velocity were performed using particle image velocimetry (PIV) in the near wake. The results suggested that for significant wake vectoring, vortex shedding must be suppressed first. Under the flow conditions cited above, C ?? values in the range of 10?C20?% were required. The wake vectoring angle seemed to asymptote to a constant value of about 30° at downstream distances, x/h, larger than 4 for C ?? values ranging between 24 and 64?%. The phase-averaged vorticity contours and the phase-averaged normal lift force showed that most of the wake vectoring is produced during the suction phase of the actuation, while the blowing phase was mostly responsible for vortex shedding suppression.  相似文献   

18.
This paper presents wind tunnel tests on a stationary cylinder inclined with the flow. The cylinder was positioned at different sets of yaw and vertical angles. The flow regime of the tests remained in the subcritical state. Two load cells were designed and installed to measure the aerodynamic forces, with enough sensitivity to measure vortex shedding frequencies. In this paper, the three aerodynamic force coefficients are normalized using the free stream velocity instead of its normal component. The results show that the drag coefficient and the resultant of the lift and side forces coefficients can be described by an empirical function of the incidence angle. The lift and side force coefficients remain however functions of both the horizontal yaw and vertical angles and cannot be expressed as functions of the incidence angle only. The Independence Principle was observed to become inaccurate for yaw angles larger than 40°. However, the measured Strouhal numbers indicate that the vortex shedding frequencies of a yawed cylinder can be predicted using the Independence Principle.  相似文献   

19.
The effect of acoustic resonance on the dynamic lift force acting on the central tube in square and normal triangle tube arrays is investigated experimentally. For each array pattern three different tube spacing ratios, corresponding to small, intermediate and large spacing ratios, are tested. The resonant sound field in the tube array is found to cause two main effects. First, it generates a “sound-induced” dynamic lift due to the resonant acoustic pressure distribution on the surface of the tube, and secondly, it synchronizes vorticity shedding from the tubes and thereby enhances the hydrodynamic lift force due to vortex shedding. The combined effect of these two unsteady lift forces depends on the phase shift between them, which is dictated by the frequency ratio of the acoustic mode to the natural vortex shedding frequencies. When the flow velocity is increased during the coincidence resonance range, the phase shift increases rapidly and therefore the effects of the two lift components change from reinforcing to counteracting each other. For the pre-coincidence lock-on range, the frequency ratio remains larger than unity and the two lift components always reinforce each other. Numerical simulations are also performed to compute the sound-induced lift force, and sound-enhancement coefficients are developed to estimate the effect of sound on the vortex shedding forces. The simulation and experimental results are implemented in a simplified design guide, which can be used to evaluate the dynamic lift forces acting on the tubes during acoustic resonances.  相似文献   

20.
This study elucidates the relation between wake vortex shedding and aerodynamic force fluctuations for a low Reynolds number wing from time resolved particle image velocimetry (TR-PIV) experimental measurements. The results reveal a periodic lift and drag variation within the shedding cycle and resolve the frequencies of those fluctuations from a proper orthogonal decomposition (POD) and power spectral density (PSD) analysis. To show the effect of vortex shedding on the body force fluctuations, the evolution of instantaneous aerodynamic forces is compared to the pressure field of the fluid flow and to the vortical structures in the wake of the airfoil. A six step model describing the vortex-force relation is proposed. It shows that changes in lift such as maximum lift and minimum lift are associated with the detachment of a vortex. It also shows that the minimum or local minimum drag value is obtained at the onset formation of a vortex on the airfoil wake. Similarly, the maximum or local maximum drag is obtained at the onset formation of the saddle on the airfoil wake. The model further explains the asymmetry observed in the unsteady drag force evolution. The model can be used to optimize flow control and fluid-structure interaction applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号