首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
主要合成了两种杂多磷钨酸盐环氧化催化剂,分别是由单缺位Keggin类型磷钨酸阴离子或者饱和结构的磷钨酸阴离子与十六烷基三甲基季铵盐阳离子构成,即[n-C16H33N(CH3)3]4Na3PW11O39(PW11)以及[n-C16H33N(CH3)3]3PW12O40(PW12),将其与低毒性的乙酸乙酯、30%的双氧水、烯烃构成催化环氧化反应体系,以环辛烯的环氧化反应为模型反应,着重探讨了PW11与PW12的催化性能产生明显差异的原因,并通过傅里叶变换-红外光谱,核磁共振谱以及催化剂溶解性实验给出了合理的解释.首先,在进行环辛烯的环氧化反应的动力学研究中,我们发现相同的反应条件下,PW11的催化活性明显高于PW12的催化活性,当反应进行至10min,以PW11为催化剂的反应体系,环辛烯的转化率已达到89%,而相应的采用PW12为催化剂的反应体系,环辛烯的转化率仅仅为11%.通过核磁磷谱(31PNMR)表征证明:当PW11和PW12与双氧水反应10min时PW11已降解产生大量的活性物种,而PW12的31PNMR谱并没有显示降解产物的谱峰.溶解性实验则更近一步说明,两个催化剂在双氧水的作用下均可降解形成小分子的物...  相似文献   

2.
吴江浩  蒋平平  冷炎  叶媛园  秦晓洁 《催化学报》2013,34(12):2236-2244
合成并表征了一类双核长链烷基咪唑阳离子修饰的过氧磷钨杂多酸盐催化剂[Dnmin]1.5PW4O24,考察了催化剂在过氧化氢为氧源的烯烃环氧化反应中的催化活性.研究表明,这类催化剂在反应过程中表现出相转移催化现象,并具有较高的催化活性和选择性.其中,双核十二烷基咪唑杂多酸盐催化剂[D12min]1.5PW4O24的活性最佳,其环己烯转化率和环氧环己烷选择性分别达到97.7%和96.3%.催化剂在经过简单离心分离后可重复使用,重复使用4次后环己烯转化率和环氧环己烷选择性仍可分别达到72.4%和97.2%.催化剂[D12min]1.5PW4O24在其它几种烯烃的环氧化反应中均表现出相转移催化特性,且具有较高的催化活性.  相似文献   

3.
CoPc/Al2O3催化分子氧环氧化环己烯的研究   总被引:1,自引:0,他引:1  
常使用均相催化剂[1-4]催化氧化剂对烯烃进行环氧化来制备环氧环己烷,但均相催化剂存在分离回收难,易二聚失活的缺点.近年来对均相催化剂的固载开展了广泛的研究,如郑岩等[5]使用溶胶 -凝胶包容乙酰丙酮镍,M.Salavati-Niasari等[6]用Al2O3固载Mn(Salen)、Mn(en)2和Mn(acac)2金属配合物用于烯烃环氧化,由于Al2O3廉价易得,酞菁具有不易二聚、降解等较稳定的优点[3],本文以酸性Al2O3为载体,固载酞菁钴金属配合物制备CoPc/Al2O3新型环氧化催化剂,并对其结构进行表征,同时以分子氧为氧源,异丁醛为还原剂考察CoPc/Al2O3催化剂对环己烯的催化环氧化活性,探索了环己烯环氧化的较佳工艺参数.  相似文献   

4.
研究了Ti-MWW/H2O2催化体系对多种官能化烯烃液相环氧化的催化性能.结果表明,与钛硅分子筛TS-1相比,Ti-MWW具有更高的催化活性和环氧化产物选择性.溶剂对Ti-MWW催化环氧化反应的活性影响较大,其中水是催化丙烯酸乙酯和乙酸烯丙酯的最佳溶剂,随着C=C双键相邻官能团吸电子能力的增强,环氧化反应的催化活性下降.  相似文献   

5.
为了在分子层次上揭示相关催化反应的机理,人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究.相比于过渡金属氧化物团簇阳离子,阴离子对一些碳氢化合物的活性弱得多,因此研究还很少.在本工作中,我们通过激光溅射产生钒氧团簇阴离子VxOy-,产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6)在一个快速流动反应管中进行反应,飞行时间质谱用来检测反应前后的团簇分布.在VxOy-与烷烃的反应中,生成了产物V2O6H-和V4O11H-;在与烯烃的反应中,产生了相应的吸附产物V4O11X-(X=C2H4或C3H6).密度泛函理论计算表明:V2O6-和V4O1-1可以活化烷烃(C2H6和C4H10)的C-H键,也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-),C-H键活化与环加成反应都需经历可以克服的反应能垒.理论计算与实验观测结果相符合.V2O6-和V4O1-1团簇都具有氧原子自由基(O·或O-)的成键特征,活性O-物种也经常出现在钒氧催化剂表面,因而本研究在分子水平上,揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

6.
催化苯羟基化反应的高效介孔VOx/SBA-16催化剂   总被引:1,自引:0,他引:1  
利用浸渍法制备了介孔SBA-16负载高分散氧化钒催化剂(VOx/SBA-16),并使用XRD,TEM,N2物理吸附和Raman光谱对其进行了表征.结果表明,制备的VOx/SBA-16催化剂保持了SBA-16立方笼状孔结构,钒物种主要高度分散在SBA-16载体孔内.钒含量为7·3%的VOx/SBA-16催化剂在催化苯羟基化反应中表现出优异的催化性能.这是由于催化剂表面形成了高分散的VO4物种和纳米结构V2O5微晶.  相似文献   

7.
研究了甲烷利用菌Methylomonas sp. GYJ3, Methylomonas sp. S, Methylomonas sp. Z201,Methylococcus capsulatus IMV3021, Methylosinus trichosporium IMV3011休止细胞催化烯烃环氧化的底物选择性, 细胞失活原因以及产物对映体组成。发生不同菌株和底物的环氧化活性不同。甲烷利用菌只能催化短链烯烃环氧化, 环烯烃和芳香烯烃无反应。对烯丙基型底物而言, 取代基大小和极性影响环氧化活性。丙烯环氧化活性最高, 烯丙醇不能环氧化。细胞失活的主要原因是环氧化产物的细胞毒性和反应体系中辅酶NADH损耗。手性气相色谱揭示甲烷利用菌催化烯烃环氧化形成外消旋产物。  相似文献   

8.
不同孔道结构的氧化硅负载钒氧化物催化丙烷氧化脱氢   总被引:1,自引:0,他引:1  
采用固定床微型反应装置,结合催化剂的原位电子自旋共振光谱、程序升温表面反应和紫外漫反射光谱等技术,研究了丙烷氧化脱氢的介孔氧化硅负载钒氧化物催化剂的性能和表面氧物种的状态及其反应性.结果表明,催化剂载体孔结构是影响钒氧物种分散状态乃至催化性能的一个重要因素.SBA-15负载钒氧化物催化剂因具有较大的比表面积和较大的孔径,不仅具有较高的丙烷氧化脱氢催化活性,而且具有较高的丙烯选择性.复合型钒氧化物催化剂表面与V离子相连的晶格氧物种是丙烷氧化脱氢牛成内烯的主要活性物种,载体表面高度分散的钒氧物种具有较高的丙烷氧化脱氢催化活性.负载型钒氧化物催化剂晶格氧物种是丙烷氧化脱氢转化为丙稀的主要活性物种,CO_2分子可以再生钒氧化物催化剂的晶格氧物种,同时它对丙烯的深度氧化作用较弱,因此在负载型钒氧化物催化剂上CO_2氧化丙烷可高选择性地生成丙烯.  相似文献   

9.
采用浸渍法制备了不同V2O5担载量的V2O5/MO-Al2O3(M = Mg, Ca, Sr, Ba)催化剂,钒物种的前驱体为偏钒酸铵.对制备的催化剂进行了一系列表征,并对催化剂上正丁烷选择性氧化脱氢制取丁烯进行了反应研究.表征结果(包括比表面积、X射线衍射、傅里叶红外光谱、氢气程序升温还原和拉曼光谱)显示,不同碱土金属元素掺杂的催化剂显示不同的钒价态信息和催化性能.其中掺杂Ca, Sr, Ba的催化剂,正钒酸盐相很难被还原,因此催化剂的氧化还原循环难以建立,导致以上三种催化剂在正丁烷氧化脱氢反应中活性较低.然而, Mg掺杂的催化剂却显示出较高的催化活性和选择性.实验结果表明:在Mg掺杂的载体上担载5% V2O5的催化剂上600°C时可获得高达30.3%的正丁烷转化率和64.3%的烯烃总选择性.这与V2O5担载量为5%时,在获得高度分散的钒氧化合物物种时可使MgO晶相稳定存在密切相关.  相似文献   

10.
为了在分子层次上揭示相关催化反应的机理, 人们对过渡金属氧化物团簇与碳氢化合物分子反应进行了大量研究. 相比于过渡金属氧化物团簇阳离子, 阴离子对一些碳氢化合物的活性弱得多, 因此研究还很少. 在本工作中, 我们通过激光溅射产生钒氧团簇阴离子VxOy, 产生的团簇在接近热碰撞条件下与烷烃(C2H6和C4H10)以及烯烃(C2H4和C3H6) 在一个快速流动反应管中进行反应, 飞行时间质谱用来检测反应前后的团簇分布. 在VxOy与烷烃的反应中, 生成了产物V2O6H-和V4O11H-; 在与烯烃的反应中, 产生了相应的吸附产物V4O11X-(X=C2H4或C3H6). 密度泛函理论计算表明: V2O-6和V4O-11可以活化烷烃(C2H6和C4H10)的C—H键, 也可以与烯烃(C2H4和C3H6)发生3+2环化加成反应形成一个五元环结构(-V-O-C-C-O-), C—H键活化与环加成反应都需经历可以克服的反应能垒. 理论计算与实验观测结果相符合. V2O-6和V4O-11团簇都具有氧原子自由基(O·或O-)的成键特征, 活性O-物种也经常出现在钒氧催化剂表面, 因而本研究在分子水平上, 揭示了表面活性氧物种与碳氢化合物反应的机理.  相似文献   

11.
Vanadia gels and vanadium-molybdenum oxide gels were investigated using the magnetic resonance techniques, EPR spectroscopy and (51)V MAS NMR spectroscopy. The vanadium oxide gels were derived from the reaction of H(2)O(2) and V(2)O(5), and the vanadium-molybdenum oxide (VMoO) gels were derived from the reaction of peroxovanadates with an ammonium molybdate solution. EPR spectroscopy was utilized to determine quantitative information about the concentration of V(4+) paramagnetic species present in the samples and additional structural information about the V(4+) coordination environment. (51)V MAS NMR spectroscopy was used to elucidate the V(5+) electronic environment and how it changes as a function of molybdenum content. The observed line broadening of the (51)V NMR signal with increasing molybdenum content was correlated with an increase in the concentration of paramagnetic species as monitored by EPR spectroscopy. The evolution of various vanadium sites during thermal treatment was also investigated. This work provides further support for the hypothesis that the selectivity of VMoO catalysts in the oxidation of 1,3-butadiene to maleic anhydride is due to the presence of paramagnetic V(4+) sites.  相似文献   

12.
The reactive intermediates and mechanisms of oxygenation of olefins by manganese complexes were investigated by treating olefins with newly synthesized [MnIV(Me2EBC)(OH)2](PF6)2 in the presence and absence of peroxide and by studying its catalytic epoxidation reaction in normal aqueous solution and, individually, with isotopically labeled H218O, 18O2, and H218O2. The manganese oxo species is not the reactive intermediate for the oxygen transfer process mediated by this manganese complex. A novel manganese(IV) peroxide intermediate, MnIV(Me2EBC)(O)(OOH)+, was captured by mass spectrometry and is proposed as the intermediate that oxygenates olefins in this catalytic system.  相似文献   

13.
Silica-supported oxovanadium groups were reacted in a gas-solid reaction with aniline at 175 degrees C. The reaction was clean as monitored in situ by UV-vis spectroscopy and resulted in the elimination of water as the principal product of the reaction and the disappearance of the terminal V=O stretch in the Raman spectrum. 15N MAS solid-state NMR spectroscopy showed only a single nitrogen-containing species on the surface. Proton-dephased 15N NMR showed only weak attenuation of its intensity, indicating that there are no protons directly bonded to the nitrogen. The formation of a vanadium-imido covalent bond was characterized by 51V/15N rotational echo double resonance NMR spectroscopy where the quadrupolar 51V nucleus was monitored and the spin-1/2 15N nucleus was dephased.  相似文献   

14.
A number of 4-substituted, dipicolinatodioxovanadium(V) complexes and their hydroxylamido derivatives were synthesized to characterize the solid state and solution properties of five- and seven-coordinate vanadium(V) complexes. The X-ray crystal structures of Na[VO2dipic-NH2].2H2O (2) and K[VO2dipic-NO2] (3) show the vanadium adopting a distorted, trigonal-bipyramidal coordination environment similar to the parent coordination complex, [VO2dipic]- (1), reported previously as the Cs+ salt. The observed differences in the chemical shifts of the complexes both in the 1H (ca. 0.7-1.4 ppm) and 51V (ca. 1-11 ppm) NMR spectra were consistent with the electron-donating or electron-withdrawing properties of the substituent groups, respectively. Stoichiometric addition of a series of hydroxylamine ligands (H2NOH, MeHNOH, Me2NOH, and Et2NOH) to complexes 1-3 led to the formation of seven-coordinate vanadium(V) complexes. The X-ray crystal structure of [VO(dipic)(Me2NO)(H2O)].0.5H2O (1c) was found to be similar to the previously characterized complexes [VO(dipic)(H2NO)(H2O)] (1a) and [VO(dipic)(OO-tBu)(H2O)]. While only slight differences in the 1H NMR spectra were observed upon addition of the hydroxylamido ligand, the signals in the 51V NMR spectra change by up to 100 ppm. The addition of the hydroxylamido ligand increased the complex stability of complexes 2 and 3. Evidence for a nonstoichiometric redox reaction was found for the monoalkyl hydroxylamine ligand. The reaction of an unsaturated five-coordinate species with a hydroxylamine to form a seven-coordinate vanadium complex will, in general, dramatically increase the amounts of the vanadium compound that remain intact at pH values near neutral.  相似文献   

15.
The reaction between [V(IV)O(acac)(2)] and the ONN donor Schiff base obtained by the condensation of pyridoxal and 2-aminoethylbenzimidazole (Hpydx-aebmz, I) or 2-aminomethylbenzimidazole (Hpydx-ambmz, II) in equimolar amounts results in the formation of [V(IV)O(acac)(pydx-aebmz)] 1 and [V(IV)O(acac)(pydx-ambmz)] 2, respectively. The aerobic oxidation of the methanolic solution of 1 yielded [V(V)O(2)(pydx-aebmz)] 3 and its reaction with aqueous H(2)O(2) gave the oxidoperoxidovanadium(v) complex, [V(V)O(O(2))(pydx-aebmz)] 4. The formation of 4 in solution is also established by titrations of methanolic solutions of 1 with H(2)O(2). By titrating solutions of 3 and of 4 with aqueous H(2)O(2) several distinct V(V)-pydx-aebmz species also containing the peroxido ligand are detected. The full geometry optimization of all species envisaged was done using DFT methods for suitable model complexes. The (51)V NMR chemical shifts (δ(V)) have also been calculated, the theoretical data being used to support assignments of the experimental chemical shifts. The (51)V hyperfine coupling constants are calculated for 1, the obtained values being in good agreement with the experimental EPR data. Reaction between the V(IV)O(2+) exchanged zeolite-Y and Hpydx-aebmz and Hpydx-ambmz in refluxing methanol, followed by aerial oxidation results in the formation of the encapsulated V(V)O(2)-complexes, abbreviated herein as [V(V)O(2)(pydx-aebmz)]-Y 5 and [V(V)O(2)(pydx-ambmz)]-Y 6. The molecular structure of 1, determined by single crystal X-ray diffraction, confirms its distorted octahedral geometry with the ONN binding mode of the tridentate ligand, with one acetylacetonato group remaining bound to the V(IV)O-centre. Oxidation of styrene is investigated using some of these complexes as catalyst precursors with H(2)O(2) as oxidant. Under optimised reaction conditions for the conversion of styrene in acetonitrile, a maximum of 68% conversion of styrene (with [V(V)O(2)(pydx-aebmz)]-Y) and 65% (with [V(V)O(2)(pydx-ambmz)]-Y) is achieved in 6 h of reaction time. The selectivity of the various products is similar for both catalysts and follows the order: benzaldehyde (ca. 55%) > 1-phenylethane-1,2-diol > benzoic acid > styrene oxide > phenyl acetaldehyde. Speciation of the systems and plausible intermediates involved in the catalytic oxidation processes are established by UV-Vis, EPR, (51)V NMR and DFT studies. Both non-radical (Sharpless) and radical mechanisms of the olefin oxidations were theoretically studied, and the radical pathway was found to be even more favorable than the Sharpless mechanism.  相似文献   

16.
Hydrolysis of carboxylic esters p-nitrophenyl acetate (pNPA), p-nitrophenyl butyrate (pNPB) and p-nitrophenyl trimethyl acetate (pNPTA) was examined in oxovanadate solutions by means of (1)H and (51)V NMR spectroscopy. In the presence of a mixture of oxovanadates, the hydrolysis of carboxyester bonds in pNPA proceeds under physiological conditions (37 °C, pD = 7.4) with a rate constant of k(obs) = 3.0 × 10(-5) s(-1) representing an acceleration of at least one order of magnitude compared to the uncatalyzed cleavage. EPR and NMR spectra did not show evidence for the formation of paramagnetic species, excluding the possibility of V(+5) reduction to V(+4), and indicating that the cleavage of the carboxyester bond is purely hydrolytic. The pH dependence of k(obs) revealed that the hydrolysis is slow in acidic media but rapidly accelerates in basic solutions. Comparison of the rate profile with the concentration profile of polyoxovanadates shows a clear overlap of the k(obs) profile with the concentration of monovanadate (V(1)). Kinetic experiments at 37 °C using a fixed amount of pNPA and increasing amounts of V(1) permitted the calculation of catalytic (k(c) = 1 x10(-4) s(-1)) and formation constant for the pNPA-V(1) complex (K(f) = 17.5 M(-1)). The (51)V NMR spectra of a reaction mixture revealed broadening and shifting of the (51)V NMR resonances of the V(1) and V(2) upon addition of increasing amount of pNPA, suggesting a dynamic exchange process between vanadates and pNPA, occurring via a rapid association-dissociation equilibrium. The origin of the hydrolytic activity of vanadate is most likely a combination of its nucleophilic nature and the chelating properties which can lead to the stabilization of the transition state.  相似文献   

17.
An organic-inorganic hybrid support has been synthesized by covalently anchoring an N-octyldihydroimidazolium cation fragment onto SiO2 (denoted as 1-SiO2). This modified support was characterized by solid-state 13C, 29Si, and 31P NMR spectroscopy, IR spectroscopy, and elemental analysis. The results showed that the structure of the dihydroimidazolium skeleton is preserved on the surface of SiO2. The modified support can act as a good anion exchanger, which allows the catalytically active polyoxometalate anion [gamma-1,2-H2SiV2W10O40]4- (I) to be immobilized onto the support by a stoichiometric anion exchange (denoted as I/1-SiO2). The structure of anion I is preserved after the anion exchange, as confirmed by IR and 51V NMR spectroscopy. The catalytic performance for the oxidation of olefins and sulfides, with hydrogen peroxide (only one equivalent with respect to substrate) as the sole oxidant, was investigated with I/1-SiO2. This supported catalyst shows a high stereospecificity, diastereoselectivity, regioselectivity, and a high efficiency of hydrogen peroxide utilization for the oxidation of various olefins and sulfides without any loss of the intrinsic catalytic nature of the corresponding homogeneous analogue of I (i.e., the tetra-n-butylammonium salt of I, TBA-I), although the rates decreased to about half that with TBA-I. The oxidation can be stopped immediately by removal of the solid catalyst, and vanadium and tungsten species can hardly be found in the filtrate after removal of the catalyst. These results rule out any contribution to the observed catalysis from vanadium and tungsten species that leach into the reaction solution, which means that the observed catalysis is truly heterogeneous in nature. In addition, the catalyst is reusable for both epoxidation and sulfoxidation without any loss of catalytic performance.  相似文献   

18.
Surface methoxy species bound to an extra‐framework Al (SMS‐EFAL) was unambiguously identified by advanced 13C‐{27Al} double‐resonance solid‐state NMR technique in the methanol‐to‐olefins reaction on H‐ZSM‐5 zeolite. The high reactivity of the SMS‐EFAL leads to the formation of surface ethoxy species and ethanol as the key intermediates for ethene generation in the early reaction stage. A direct route for the initial C?C bond formation in ethene was proposed and corroborated by density functional theory calculations.  相似文献   

19.
The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H(2)O(2), produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(V)-oxo porphyrins are diamagnetic low-spin (S = 0) species with a longer, weaker Mn-O bond than in previously reported Mn(V)-oxo complexes of non-porphyrin ligands. This is indicative of double-bond character between the manganese(V) ion and the oxygen atom and may be attributed to the presence of a trans axial ligand. The [(Porp)Mn(V)=O](+) species are stable in the presence of base at room temperature. The stability of the intermediates is dependent on base concentration. In the absence of base, (Porp)Mn(IV)=O is generated instead of the [(Porp)Mn(V)=O](+) species. The stability of the [(Porp)Mn(V)=O](+) species also depends on the electronic nature of the porphyrin ligands: [(Porp)Mn(V)=O](+) complexes bearing electron-deficient porphyrin ligands are more stable than those bearing electron-rich porphyrins. Reactivity studies of manganese(V)-oxo porphyrins revealed that the intermediates are capable of oxygenating PPh(3) and thioanisoles, but not olefins and alkanes at room temperature. These results indicate that the oxidizing power of [(Porp)Mn(V)=O](+) is low in the presence of base. However, when the [(Porp)Mn(V)=O](+) complexes were associated with iodosylbenzene in the presence of olefins and alkanes, high yields of oxygenated products were obtained in the catalytic olefin epoxidation and alkane hydroxylation reactions. Mechanistic aspects, such as oxygen exchange between [(Porp)Mn(V)=16O](+) and H(2)(18)O, are also discussed.  相似文献   

20.
Interactions between a bioactive diperoxovanadate complex K3[OV(O2)2(C2O4)].H2O and pyridine in solution were studied by 2D NMR diffusion ordered spectroscopy (DOSY) as well as 1D 1H, 13C, 14N, and 51V NMR, variable temperature 1H NMR and spin-lattice relaxation time. Competitive coordination between C2O(4)(2-) and pyridine to [OV(O2)(2)](-) were observed in solution. A new species [OV(O2)2(Py)](-) was formed and its NMR data were reported for the first time. The experimental results indicated that both of the vanadium atom in species [OV(O2)2(C2O4)](3-) and [OV(O2)2(Py)](-) are six coordinated in solution. The conclusion was further supported by the results of ESI-MS. The newly-formed species is stable under the condition of near physiological pH value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号