首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The effectiveness of Triton X-102 (TX-102), as a structural modifier of the polymeric surfactant sodium undecanoyl-L-leucinate (L-SUL) was investigated for enhanced enantiomeric recognition of various chiral compounds in micellar electrokinetic chromatography (MEKC). Increasing concentrations of TX-102 were separately added into the micellar solutions of L-SUL and then polymerized to form poly-L-SUL. The resulting polymers were purified by use of 3500 molecular-weight-cutoff (MWCO) dialysis membranes. Fluorescence and pulsed field gradient-nuclear magnetic resonance (PFG-NMR) techniques were used to elucidate the structural effects of TX-102 on poly-L-SUL. Evaluation of data from fluorescence measurements suggested an increase in polarity with increasing concentration of TX-102. However, the polarity decreased at higher concentrations of TX-102. Evaluation of data from PFG-NMR suggested an increase in hydrodynamic radius upon increasing the concentration of TX-102. The racemates of coumarinic and phenythiohydantoin amino acid derivatives, and pindolol were used as test analytes in MEKC. A notable increase in resolution and capacity factors of the test analytes was observed when the modified poly-L-SUL was used in MEKC measurements. Examination of the data obtained from fluorescence, PFG-NMR, and MEKC suggests a strong correlation between the polarity and the hydrodynamic radii of TX-102 modified micelles and the enantiomeric resolution of the test analytes.  相似文献   

2.
A novel method of modifying sodium undecanoyl-L-leucinate (SUL) micelles employed in chiral separation of analytes in micellar electrokinetic chromatography (MEKC) to enhance selectivity toward specific analytes is discussed. The current study aimed at modifying the SUL micelles by introducing different alcohols into the mono-SUL micelles. The micellar solutions were then polymerized in the presence of alcohols followed by postpolymerization extraction of the alcohols to yield alcohol-free polymeric surfactants (poly-L-SUL). The effects of hexanol (C(6)OH) and undecylenyl alcohol (C(11)OH) on micellar properties of this surfactant were investigated by use of surface tensiometry, fluorescence spectroscopy, pulsed field gradient-nuclear magnetic resonance (PFG-NMR), and MEKC. The surface tension and PFG-NMR studies indicated an increase in the critical micelle concentration (cmc) and micellar size upon increasing the alcohol concentration. Fluorescence measurements suggested that alcohols induce closely packed micellar structures. Coumarinic and benzoin derivatives, as well as (+/-)-1, 1'-binaphthyl-2,2'-dihydrogen phosphate (BNP) were used as test analytes for MEKC experiments. Examination of MEKC data showed remarkable resolutions and capacity factors of coumarinic derivatives obtained with modified poly-L-SUL as compared to the unmodified poly-L-SUL. Evaluation of fluorescence, PFG-NMR, and MEKC data suggest a strong correlation between the polarity and hydrodynamic radii of alcohol-modified micelles and the resolution of the test analytes.  相似文献   

3.
A chiral amino acid-based monomeric and polymeric surfactant, sodium oleyl-L-leucylvalinate) (L-SOLV) and poly(sodium oleyl-L-leucylvalinate) (poly-L-SOLV) were synthesized and used for chiral separations in micellar electrokinetic chromatography (MEKC). Poly-L-SOLV was used successfully in the separation of various enantiomers of neutral, acidic, and basic analytes such as 1,1'-bi-2-napthol, 1,1'-binaphthyl-2,2'-diamine, benzoin, hydrobenzoin, benzoin methylether, warfarin, and coumachlor obtaining well-resolved peaks but with only partial separation of temazepam. In addition, the atropisomer 1,1'-binaphthyl-2, 2'-dihydrogen phosphate was chosen to study the applicability of the polymeric surfactant over a wide range of parameters such as concentration, temperature, voltage, and pH. The most striking characteristic of this new surfactant is its high hydrophobicity. It is favorable to interactions with hydrophobic chiral analytes, and thus may provide better chiral recognition for the compounds.  相似文献   

4.
Haddadian F  Shamsi SA  Warner IM 《Electrophoresis》1999,20(15-16):3011-3026
Polymeric amino acid based surfactants have been recently employed as pseudostationary phases in capillary electrophoresis. These phases are effective for chiral separation of analytes in different charge states and hydrophobicities. This review paper focuses on polymeric dipeptide surfactants. The benefits of dipeptide over single amino acid micelle polymers are shown. Some aspects of dipeptide surfactants that are presented here includes the amino acid order, effect of number and position of chiral centers, and steric factors on enantiomeric separation of chiral compounds in different charge states. In addition, the preferential site of interaction of the chiral analyte using diastereomers of polymeric dipeptide surfactants is discussed.  相似文献   

5.
This review surveys the enantiomeric separation of drugs by electrokinetic chromatography using polymeric chiral surfactant pseudostationary phases. These phases have recently been shown to provide better mass transfer and increased rigidity and stability than regular micelles in micellar capillary electrophoresis. Characterization of the polymeric chiral surfactants is presented. Solution interactions of the pseudostationary phases via thermodynamics and fluorescence probe studies are evaluated. Also, case studies of enantiomeric separation of drugs using a single amino acid surfactant and the synergistic effect of the addition of gamma-cyclodextrin to the buffer is discussed. The use of dipeptide surfactants for chiral drug separations is described as well.  相似文献   

6.
Rizvi SA  Shamsi SA 《Electrophoresis》2005,26(21):4172-4186
Four alkenoxy leucine-based surfactants with C8-C11 chains containing a terminal double bond, and one C11 chain surfactant with a terminal triple bond are synthesized and characterized in monomeric and polymeric forms. These polymeric pseudophases are then utilized to study the influence of chain length and DP for the enantioseparations of seven beta-blockers in MEKC. Variations in chain length and concentration of polymeric surfactants showed significant effects on the chiral resolution (Rs) and efficiency (N). A relatively large elution range combined with the highest polarity and aggregation number (A) but the lowest retention time, partial specific volume, and optical rotation generated with C8-polymeric surfactant results in simultaneous enantioseparation of all seven beta-blockers with higher N and R(s). In particular, highly hydrophobic beta-blockers are better resolved with shorter hydrocarbon chain even at higher surfactant concentration, which is unachievable with longer chain surfactant. On the other hand, polymer derived from C11-triple bond provided smaller A value compared to C11-double bond surfactant. However, chiral Rs of hydrophobic beta-blockers are still achievable with the C11-triple bond surfactant with enhanced N and shorter analysis time. In addition, effect of polymerization concentration is evaluated by polymerizing all five surfactants at five times their respective CMCs and 100 mM equivalent monomer concentrations. Polymerization of shorter chain (C8 and C9) double-bonded surfactants at five times their respective CMCs results in higher A values with better chiral Rs and N compared to the same two surfactants polymerized at 100 mM.  相似文献   

7.
Interaction of tetradecyltrimethylammonium bromide (TTAB), octylophenylpolyoxyethylene ether (TX-100), sodium dodecylsulfate (SDS), N,N′-ditetradecyl-N,N,N′,N′-tetramethyl-N,N′-butanediyl-diammonium dibromide (14,4,14) and N,N′-didodecyl-N,N,N′,N′-tetramethyl-N,N′-butanediyl-diammonium dibromide (12,4,12) with an anionic diazo dye, Congo Red, was investigated using conductometry, spectroscopy, tensiometry, and pulsed field gradient NMR (PFG-NMR). The formation of dye-surfactant ion pairs, their small mixed aggregates (below the critical micelle concentration (CMC) of these surfactants) and surfactant micelles were detected successfully. Above the CMC, the dye reverted to its monomeric state and solubilized in the micelles. Job's method was used to determine the stoichiometric ratio of dye and surfactant in ion pairs and revealed the formation of more hydrophile ion pairs for geminis compared to their conventional analogs. Quantitative results obtained from tensiometry indicated the existence of considerable synergism for cationic surfactants and antagonism for anionic SDS. In addition, the synergism observed for TX-100 revealed the effect of π-π stacking and hydrophobic forces on ion pair and mixed micelle formation. The increase of dye-surfactant interactions by increasing the electrical charge and chain length of cationic surfactants confirmed the importance of both electrostatic and hydrophobic forces in binary dye/surfactant systems. The hydrodynamic radii of the micelles were determined by self-diffusion coefficient measurements. The average size of the cationic and nonionic micelles increased in the presence of CR molecules.  相似文献   

8.
Akbay C  Gill NL  Agbaria RA  Warner IM 《Electrophoresis》2003,24(24):4209-4220
An achiral monomeric surfactant (sodium 10-undecenyl sulfate, SUS) and a chiral surfactant (sodium 10-undecenoyl L-leucinate, SUL) were synthesized and polymerized individually to form poly-SUS and poly-SUL. These surfactants were then copolymerized at various molar ratios to produce a variety of copolymerized surfactants (CoPSs), possessing both achiral (sulfate) and chiral (leucinate) head groups. The CoPSs, poly-SUS, poly-SUL, and sodium dodecyl sulfate were characterized using several analytical techniques. The aggregation numbers of the polymeric surfactants and the partial specific volumes were determined by the use of fluorescence quenching and density measurements, respectively. These polymeric surfactants were investigated as novel pseudostationary phases in micellar electrokinetic chromatography (MEKC) for the separation of chiral and achiral solutes. Solute hydrophobicity was found to have major influence on the MEKC retention of alkyl phenyl ketones. In contrast, hydrogen-bonding ability of benzodiazepines is the major factor that governs their retention, but hydrophobicity has an insignificant effect on MEKC retention of benzodiazepines.  相似文献   

9.
Two polymeric dipeptide chiral surfactants (PDCSs), poly sodium N-undecanoyl isoleucyl-valinate (SUILV) with three chiral centers and poly sodium N-undecanoyl leucyl-valinate (SULV) with two chiral centers, have been evaluated and compared as chiral pseudo-stationary phases in electrokinetic capillary chromatography. The performance of these surfactants, in terms of enantioselectivity was examined using anionic, cationic and neutral analytes. Analyses of the data suggest that the enantiomeric resolutions of the analytes with these two PDCSs are dependent upon steric factors rather than number of stereogenic centers.  相似文献   

10.
One disadvantage of amino acid-based chiral selectors for micellar electrokinetic chromatography (MEKC) is that either they have very low solubility or are insoluble at acidic pHs. In order to increase solubilities at lower pHs, we have synthesized a highly water-soluble achiral surfactant and copolymerized it with an amino acid-based chiral surfactant. These two surfactants were polymerized either separately or at various molar rations of binary solutions, yielding pure molecular or copolymerized surfactant (CoPS), respectively. All surfactants were characterized by use of several analytical techniques prior to using them as novel pseudostationary phases in MEKC. The chromatographic performance of the CoPS in MEKC was tested with chiral and achiral analytes. The highly soluble sulfate head group significantly increased the solubility of amino acid-based CoPS over a wide range of pH. Three chiral binaphthyl derivatives were tested and each surfactant system was found to have different selectivity.  相似文献   

11.
Rizvi SA  Shamsi SA 《Electrophoresis》2003,24(15):2514-2526
Two amino acid-based alkenoxy micelle polymers were synthesized for this study. These include polysodium N-undecenoxy carbonyl-L-leucinate (poly-L-SUCL) and polysodium N-undecenoxy carbonyl-L-isoleucinate (poly-L-SUCIL). The polymerization time and concentration of the synthesized micelle polymers were optimized by (1)H-nuclear magnetic resonance (NMR) and capillary electrophoresis (CE) experiments. Detailed physicochemical properties ((1)H NMR, critical micelle concentration (CMC), optical rotation, partial specific volume, aggregation number, and polarity) were determined, and these molecular micelles were introduced as a pseudostationary phase in micellar electrokinetic chromatography to study the molecular recognition and to develop a method for simultaneous separation of eight chiral beta-blockers. It is found that poly-L-SUCL gives overall better chiral resolution and wider chiral window than poly-L-SUCIL. After optimizing the type of micelle polymer, injection size and temperature, simultaneous separation and enantioseparation of eight beta-blockers were achieved in less than 35 min. A comparison with the amide-type surfactants of the same polar head group and alkyl chain length showed that carbamate-type surfactants always work better than the corresponding amide-type surfactant.  相似文献   

12.
To better understand chiral recognition with polymeric amino acid based surfactants, the chromatographic performance of 18 monomeric and polymeric surfactants were compared for chiral analytes with various charge states and hydrophobicities. In this study, four amino acids (glycine, L-alanine, L-valine, and L-leucine) were chosen, and all possible combinations of the chiral single amino acid and dipeptide surfactants were synthesized. The results indicate that polymeric surfactants usually provide better chiral resolution for enantiomers of lorazepam, temazepam, 1,1'-bi-2-naphthol, and propranolol as compared to monomeric surfactants. In contrast, monomers perform better for chiral recognition of the 1,1'-bi-2-naphthyl-2,2'-diyl hydrogenphosphate enantiomers.  相似文献   

13.
The preparation of 12 new polyester surfactants based on aliphatic amines and different ethylene oxide content is described. These surfactants were characterized by determining their molecular weights and polydispersity by gel permeation chromatography (GPC) and nitrogen content. Drop volume tensiometry (DVT) was used to measure the surface tension at 25, 35, 45 and 55°C. The surface tension isotherms were used to determine critical micelle concentration (CMC), maximum Gibb's adsorption (Γmax), minimum area per molecule (Amin), the effectiveness of surface tension reduction (πcmc) and the efficiency (pC20). The thermodynamic parameters of micellization (ΔGmic, ΔHmic, ΔSmic) and of adsorption (ΔGad, ΔHad, ΔSad) were calculated and the data showed that these surfactants favor micellization to adsorption. The static scattered light intensity measurements provide the calculation of the molecular weight of micelle and the aggregation number (N°), while the dynamic light scattering provide the hydrodynamic radius of micelle (RH) and the diffusion coefficient at different surfactant concentrations. The hydrodynamic radius of micelle (RH) at different surfactant concentrations could be used also to determine the CMC giving results that are comparable to those obtained by surface tension measurements. All the data are discussed regarding the chemical structure of the polymeric surfactants. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
We have investigated self-organization of polymers with surfactants through solvent shifting process resulting in formation of stable and uniform nanoparticles. We studied polymeric nanoparticles made of poly(methylmethacrylate) and of polystyrene dispersed in water. The dispersion was prepared by a fast mixing of a solution of the polymers with a solution of several ionic and nonionic surfactants in pure water. We observed the formation of well defined nanoparticles by light scattering, small-angle neutron scattering (SANS), and cryogenic transmission electron microscopy (Cryo-TEM) methods. The study shows how nanoparticle properties are changed by the chemical composition of surfactants, molar mass of polymers, concentrations of both components and finally, by variations in method of nanoparticles preparation. Dynamic light scattering (DLS) and static light scattering (SLS) provide the hydrodynamic radii and radii of gyration for selected types of nanoparticles. Cryo-TEM experiments prove that the nanoparticles have good spherical shape. Analysis of SANS data and Cryo-TEM micrographs suggest that the prepared particles are composed of polymer and surfactant that are evenly distributed.  相似文献   

15.
Aggregation behavior of three N-acyl amino acid surfactants, sodium N-(11-acrylamidoundecanoyl)-l-serinate (SAUS), sodium N-(11-acrylamidoundecanoyl)-l-asparaginate (SAUAS), and sodium N-(11-acrylamidoundecanoyl)-l-glutaminate (SAUGL), was studied in aqueous solution by use of surface tension, fluorescence, dynamic light scattering, and transmission electron microscopic techniques. The amphiphiles have been shown to initially form flexible bilayer structures, which upon increase of surfactant concentration transform into closed spherical vesicles. The transmission electron micrographs of the aqueous solutions of the surfactants confirmed the existence of spherical vesicles. Dynamic light scattering measurements were performed to obtain hydrodynamic radii of the vesicles. Circular dichroism spectra of the amphiphiles indicated formation of chiral helical aggregates in the case of SAUS. The self-assembly formation of the amphiphiles has been discussed in light of the intermolecular hydrogen bonding interaction of the amide groups.  相似文献   

16.
Hadley MR  Harrison MW  Hutt AJ 《Electrophoresis》2003,24(15):2508-2513
The enantiomeric resolution of 1,1'-binaphthyl-2,2'-diamine and Tr?ger's base was investigated using the commercially available zwitterionic surfactants 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulphonate (CHAPS) and 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulphonate (CHAPSO). Resolution of the weakly basic chiral probes was achieved using varying concentrations of surfactant, above their critical micellar concentrations, in a phosphate buffer (pH 2.5; 100 mM) to ensure ionisation of the analytes. Both CHAPS and CHAPSO were employed in the absence of additional coselectors or surfactants as sole micellar-forming agents. The addition of organic modifiers, methanol and acetonitrile (ACN), to the background electrolyte (BGE) was found to have a detrimental effect on enantioselectivity presumably by alteration of the phase polarity.  相似文献   

17.
A comparison of polymeric and ceramic membranes in the ultrafiltration process was studied and presented. This study was conducted on the separation of cadmium(II) ions, with particular reference to parameters such as hydrodynamic permeability coefficient, membrane fouling, amount of surfactant in the permeate, efficiency, and effectiveness of the process. The effect of ionic (SDS) and non-ionic (Rofam 10) surfactants or their mixture was investigated. The hydrodynamic permeability coefficient of the ceramic membrane was found to be much lower in comparison to those of the polymeric ones (1.69 × 10?7 m3 h?1 m?2 Pa?1, 5.66 × 10?7 m3 h?1 m?2 Pa?1, and 9.26 × 10?7 m3 h?1 m?2 Pa?1 for ceramic, CA, and PVDF, respectively). However, filtration of the surfactants solutions did not cause permanent blocking of pores and the surface of the ceramic membrane in contrast to the polymeric ones. No significant differences in surfactants permeation through the membranes tested were observed. Concentration of the surfactant in the permeate was lower than 1 CMC for the Rofam 10 solution and exceeded the CMC by about 40 % for the SDS solution. Better separation properties of polymer membranes for the separation of cadmium(II) ions from micellar systems were identified.  相似文献   

18.
Edwards SH  Shamsi SA 《Electrophoresis》2002,23(9):1320-1327
Chiral separation of moderately to highly hydrophobic polychlorinated biphenyls (PCBs) using a conventional chiral micelle or a polymeric chiral surfactant, as the single chiral selector is very difficult since the hydrophobic interactions between the chiral PCB and the monomeric or polymeric surfactant is very strong. Combined use of a polymeric chiral surfactant, polysodium N-undecanoyl-D-valinate (poly-D-SUV) with hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) was successful in cyclodextrin modified electrokinetic chromatography (CD-EKC) enantioseparation of PCB congeners. Addition of HP-gamma-CD to the background electrolyte containing poly-D-SUV functioned to improved chiral resolution for the PCBs and reduce the analysis time for these congeners. In addition, concentration of methanol, concentration of 2-(N-cyclohexylamino) ethanesulfonic acid (CHES) buffer and separation voltage was also varied to optimize multicomponent separation of five chiral PCBs. Simultaneous separation and enantioseparation of all five PCBs was possible in less than 50 min under optimized conditions that requires a 5 mM CHES solution buffered at about pH 10 with 1.5% w/v (ca. 60 mM) poly-D-SUV and 16 mM HP-gamma-CD. In addition, 1 M urea and 20% v/v methanol should be added as organic modifier and the capillary temperature maintained at 45 degrees C. As expected the polymeric surfactant showed improved chiral resolution of PCBs over conventional micelles of SUV. Under optimized conditions, when CD-EKC of chiral PCBs using poly-D-SUV was compared to sodium dodecyl sulfate (SDS), better resolution, higher efficiency and shorter analysis time was achieved with poly-D-SUV.  相似文献   

19.
Reactive black 5 (RB-5) dye was removed from a water stream using two cationic surfactants, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC), via micellar enhanced ultrafiltration. Three membranes with different pore size were used for the determination of rejection coefficient and permeate flux of the solution at 1.5 bar trans-membrane pressure (TMP). The two surfactants (CPC and CTAB) played an almost negligible role in rejection efficiency with 5000 and 10,000 molecular weight cut-off membrane (MWCO), respectively. In this case, high rejection and low permeate flux was the result of a larger molecular size of RB-5 DYE being retained by comparatively smaller sized pores of membrane via ultrafiltration. However, CPC and CTAB surfactants showed 83% and 98% rejection coefficient, respectively, at a concentration greater than their CMC values against 30,000 MWCO. Permeate flux remained low and constant in presence of 5000 and 10,000 MWCO with a small variation against 30,000 MWCO for the two surfactants, thereby no appreciable effect on both surfactant concentrations on concentration polarization was estimated. Thus, RB-5 dye alone was determined to be responsible for membrane plugging or concentration polarization and ultimately for low permeate flux. The effect of trans-membrane pressure was also investigated during this study.  相似文献   

20.
This review explores three (A, B, C) polyoxyalkylated diethylenetriamine (DETA) polymeric surfactants belonging to the group of star-like polymers. They have a similar structure, differing only in the number of polymeric branches (4, 6 and 9 in the mentioned order). The differences in these surfactants' ability to stabilize foam, o/w/o and w/o/w emulsion and wetting films are evaluated by a number of methods summarized in Section 2. Results from the studies indicate that differences in polymeric surfactants' molecular structure affect the properties exhibited at air/water, oil/water and water/solid interfaces, such as the value of surface tension, interfacial tension, critical micelle concentration, degree of hydrophobicity of solid surface, etc. Foam, emulsion and wetting films stabilized by such surfactants also show different behavior regarding some specific parameters, such as critical electrolyte concentration, surfactant concentration for obtaining a stable film, film thickness value, etc. These observations give reasons to believe that model studies can support a comprehensive understanding of how the change in polymeric surfactant structure can impact thin liquid films properties. This may enable a targeted design of the macromolecular architecture depending on the polymeric surfactants application purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号