首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
We consider the problem of partial controllability for an evolution equation with a quadratic nonlinearity, in which one should provide, at a given time, a given projection of the solution onto some finite-dimensional subspace by using the action of external forces that belong to one and the same subspace at each time. On the basis of estimates for the solution of a subdifferential Cauchy problem for a system of Navier-Stokes type, we prove the controllability and the existence of a control with minimum norm. We consider applications to the Navier-Stokes equations of a viscous incompressible fluid and a heat convection model.  相似文献   

2.
Ming Zhou 《PAMM》2010,10(1):553-554
We consider preconditioned subspace iterations for the numerical solution of discretized elliptic eigenvalue problems. For these iterative solvers, the convergence theory is still an incomplete puzzle. We generalize some results from the classical convergence theory of inverse subspace iterations, as given by Parlett, and some recent results on the convergence of preconditioned vector iterations. To this end, we use a geometric cone representation and prove some new trigonometric inequalities for subspace angles and canonical angles. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We consider the problem of experimental design for linear ill-posed inverse problems. The minimization of the objective function in the classic A-optimal design is generalized to a Bayes risk minimization with a sparsity constraint. We present efficient algorithms for applications of such designs to large-scale problems. This is done by employing Krylov subspace methods for the solution of a subproblem required to obtain the experiment weights. The performance of the designs and algorithms is illustrated with a one-dimensional magnetotelluric example and an application to two-dimensional super-resolution reconstruction with MRI data.  相似文献   

4.
We consider a problem for a quasilinear hyperbolic equation with a nonlocal condition that contains a retarded argument. By reducing this problem to a nonlinear integrofunctional equation, we prove the existence and uniqueness theorem for its solution. We pose an inverse problem of finding a solution-dependent coefficient of the equation on the basis of additional information on the solution; the information is given at a fixed point in space and is a function of time. We prove the uniqueness theorem for the solution of the inverse problem. The proof is based on the derivation and analysis of an integro-functional equation for the difference of two solutions of the inverse problem.  相似文献   

5.
In this article, we consider to solve the inverse initial value problem for an inhomogeneous space-time fractional diffusion equation. This problem is ill-posed and the quasi-boundary value method is proposed to deal with this inverse problem and obtain the series expression of the regularized solution for the inverse initial value problem. We prove the error estimates between the regularization solution and the exact solution by using an a priori regularization parameter and an a posteriori regularization parameter choice rule. Some numerical results in one-dimensional case and two-dimensional case show that our method is effcient and stable.  相似文献   

6.
We consider the problem of how to expand a given subspace for approximating an eigenvalue and eigenvector of a matrix A. Specifically, we consider which vector in the subspace, after multiplied by A, provides optimal expansion of the existing subspace for the eigenvalue problem. We determine the optimal vector, when the quality of subspace for approximation is measured by the angle between the subspace and the eigenvector. We have also derived some characterization of the angle that might lead to more practically useful choice of the expansion vector.  相似文献   

7.
In this study, we consider a coefficient problem of a quasi-linear two-dimensional parabolic inverse problem with periodic boundary and integral over determination conditions. We prove the existence, uniqueness and continuously dependence upon the data of the solution by iteration method. Also, we consider numerical solution for this inverse problem by using linearization and the implicit finite-difference scheme.  相似文献   

8.
For a hyperbolic equation, we consider an inverse coefficient problem in which the unknown coefficient occurs in both the equation and the initial condition. The solution values on a given curve serve as additional information for determining the unknown coefficient. We suggest an iterative method for solving the inverse problem based on reduction to a nonlinear operator equation for the unknown coefficient and prove the uniform convergence of the iterations to a function that is a solution of the inverse problem.  相似文献   

9.
10.
We consider sequential, i.e., Gauss–Seidel type, subspace correction methods for the iterative solution of symmetric positive definite variational problems, where the order of subspace correction steps is not deterministically fixed as in standard multiplicative Schwarz methods. Here, we greedily choose the subspace with the largest (or at least a relatively large) residual norm for the next update step, which is also known as the Gauss–Southwell method. We prove exponential convergence in the energy norm, with a reduction factor per iteration step directly related to the spectral properties, e.g., the condition number, of the underlying space splitting. To avoid the additional computational cost associated with the greedy pick, we alternatively consider choosing the next subspace randomly, and show similar estimates for the expected error reduction. We give some numerical examples, in particular applications to a Toeplitz system and to multilevel discretizations of an elliptic boundary value problem, which illustrate the theoretical estimates.  相似文献   

11.
In this paper we consider the problem of approximating the solution of infinite linear systems, finitely expressed by a sparse coefficient matrix. We analyse an algorithm based on Krylov subspace methods embedded in an adaptive enlargement scheme. The management of the algorithm is not trivial, due to the irregular convergence behaviour frequently displayed by Krylov subspace methods for nonsymmetric systems. Numerical experiments, carried out on several test problems, indicate that the more robust methods, such as GMRES and QMR, embedded in the adaptive enlargement scheme, exhibit good performances.  相似文献   

12.
We consider a time-harmonic electromagnetic scattering problem for an inhomogeneous medium. Some symmetry hypotheses on the refractive index of the medium and on the electromagnetic fields allow to reduce this problem to a two-dimensional scattering problem. This boundary value problem is defined on an unbounded domain, so its numerical solution cannot be obtained by a straightforward application of usual methods, such as for example finite difference methods, and finite element methods. A possible way to overcome this difficulty is given by an equivalent integral formulation of this problem, where the scattered field can be computed from the solution of a Fredholm integral equation of second kind. The numerical approximation of this problem usually produces large dense linear systems. We consider usual iterative methods for the solution of such linear systems, and we study some preconditioning techniques to improve the efficiency of these methods. We show some numerical results obtained with two well known Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.  相似文献   

13.
For an equation of the parabolic-hyperbolic type, we consider an inverse problem with a nonlocal condition relating solution derivatives that belong to different types of the equation in question. We justify a uniqueness criterion and prove the existence of a solution of the problem by the spectral analysis method. We prove the stability of the solution with respect to the nonlocal boundary condition.  相似文献   

14.
We consider the problem of the resolution of fuzzy equation systems: A certain number of fuzzy inputs and outputs is given. How can we determine a fuzzy relation which describes the behaviour of the object under consideration? When attributing this problem to fuzzy equations in the classical sense it may happen that a solution does not exist. Therefore we introduce fuzzy tolerances as an extension of the solvability conception. For this problem we get the whole solution set by means of posets. Moreover, we consider the inverse problem: How to determine tolerances to get consistency (i.e. at least one solution) for the arising equation system.  相似文献   

15.
We consider a mixed problem with integro-differential boundary conditions for a nonclassical equation. Under certain conditions, we apply a finite integral transform to this problem and obtain a parametric problem. We introduce the notion of proper boundary conditions of the parametric problem, which is wider than the notion of regularity. By applying the inverse integral transform to the solution of the parametric problem, we obtain an analytic representation of the solution of the original mixed problem.  相似文献   

16.
n this paper, we present an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax=λBx. We first formulate a version of inexact inverse subspace iteration in which the approximation from one step is used as an initial approximation for the next step. We then analyze the convergence property, which relates the accuracy in the inner iteration to the convergence rate of the outer iteration. In particular, the linear convergence property of the inverse subspace iteration is preserved. Numerical examples are given to demonstrate the theoretical results.  相似文献   

17.
In this paper, an inverse boundary value problem for a two-dimensional hyperbolic equation with overdetermination conditions is studied. To investigate the solvability of the original problem, we first consider an auxiliary inverse boundary value problem and prove its equivalence to the original problem in a certain sense. We then use the Fourier method to reduce such an equivalent problem to a system of integral equations. Furthermore, we prove the existence and uniqueness theorem for the auxiliary problem by the contraction mappings principle. Based on the equivalency of these problems, the existence and uniqueness theorem for the classical solution of the original inverse problem is proved. Some discussions on the numerical solutions for this inverse problem are presented including some numerical examples.  相似文献   

18.
The initial boundary value problem for the diffusion equation is considered in the case of spherical symmetry and an unknown initial condition. Additional information used for determining the unknown initial condition is an external volume potential whose density is the Laplace operator applied to the solution of the initial boundary value problem. The uniqueness of the solution of the inverse problem is studied depending on the parameters entering into the boundary conditions. It is shown that the solution of the inverse problem is either unique or not unique up to a one-dimensional linear subspace.  相似文献   

19.
One of the basic inverse problems in an anisotropic media is the determination of coefficients in a bounded domain with a single measurement. We consider the problem of finding the coefficient of the second derivatives in a second-order hyperbolic equation with variable coefficients.

Under a weak regularity assumption and a geometrical condition on the metric, we prove the uniqueness in a multidimensional hyperbolic inverse problem with a single measurement. Moreover we show that our uniqueness results yield the Lipschitz stability estimate in L 2 space for solution to the inverse problem under consideration.  相似文献   

20.
We consider numerical methods for solving inverse problems that arise in heart electrophysiology. The first inverse problem is the Cauchy problem for the Laplace equation. Its solution algorithm is based on the Tikhonov regularization method and the method of boundary integral equations. The second inverse problem is the problem of finding the discontinuity surface of the coefficient of conductivity of a medium on the basis of the potential and its normal derivative given on the exterior surface. For its numerical solution, we suggest a method based on the method of boundary integral equations and the assumption on a special representation of the unknown surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号