首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the temperature-dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x≈0.1–0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. All the layers doped with manganese exhibited n-type conductivity with Curie temperature over 350 K. The efficient PL are peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. It was found that the blue band at 3.29 eV is mostly associated with the formation complexes between donors (e.g., N vacancy) and Mn acceptors, which results in forming donor levels at 0.23 eV below the conduction band edge. The yellow band is attributed to intrinsic gallium defects. The broad band at 1.86 eV is attributed to inner 5D state transition (T2 to E) of Mn ions.  相似文献   

2.
We have prepared iron-oxypnictide SmFeAsO1−xFx by ambient-pressure technique and SmFeAsO1−y by high-pressure technique, and characterized their bulk and local magnetic properties by using SQUID magnetometer and magneto-optical imaging. While the high-pressure samples have densities close to the theoretical value, the ambient-pressure samples have several small voids. Despite these structural differences between the two kinds of samples, they both have superconducting transition temperature above 50 K. In addition, magneto-optical images for both samples show similar kinds of inhomogeneities with large current concentrated in several grains and with small intergranular current. The estimated intragranular currents for both samples are over 105 A/cm2 at low temperatures and low fields.  相似文献   

3.
Partial substitution of manganese by cobalt in rare-earth perovskites REMnO3 leads to unusual magnetic phenomena because of the simultaneous presence of Mn3+, Mn4+, Co2+ and Co3+ species. The magnetic nature of the RE cation plays a fundamental role in the magnetic properties. We present herein two specific families: for RE=La the magnetic behavior of the |Co+Mn| network is observed, while for Gd its strong magnetic moment interacts with the transition metals, leading to a spin reversal state. Magnetic interactions are maximized at x=0.50, as if two regimes exist: for x<0.5 Co substitutes Mn in the REMnO3 manganite, and for x>0.5 Mn substitutes Co in the RECoO3 cobaltite.  相似文献   

4.
Using near-field scanning optical microscopy (NSOM), we report the spatial distribution of photoluminescence (PL) intensity in III-nitride-based semiconductor layers grown on GaN substrates. Undoped GaN, In0.11Ga0.89N, and In0.13Ga0.87N/GaN multi-quantum wells (MQWs) were grown by metal organic chemical vapor deposition (MOCVD) on freestanding GaN substrates. Micro-Raman spectroscopy has been used to evaluate the crystalline properties of the GaN homoepitaxial layers. The variation of the PL intensity from the NSOM imaging indicates that the external PL efficiency fluctuates from 20% to 40% in the 200 nm InGaN single layer on freestanding GaN, whereas it fluctuates from 20% to 60% in InGaN/GaN MQWs. In the NSOM-PL images, bright island-like features are observed. After deconvolution with the spatial resolution of the NSOM, the size of these features is estimated to be in the range of 150–250 nm.  相似文献   

5.
Near band edge photoluminescence has been obtained from Si1−yCy quantum well (QW) and neighboring Si1−xGex/Si1−yCy double QW (DQW) structures. Enhanced no-phonon recombination is observed from the DQW structures and it is attributed to a breaking of the k-selection rule in the presence of the heterointerface. The luminescence persists for measurement temperatures up to 30–50 K and the intensity exhibits a quenching behavior with an activation energy equal to 8–20 meV. In electroluminescence only recombination in the Si1−xGex layer has been observed from neighboring Si1−xGex and Si1−yCy DQW structures.  相似文献   

6.
The paper represents a detailed insight into the correlation between changes of the phase composition of crystalline YbxZr1−xO2−x/2 solid solutions and their structural, electrical, mechanical and optical properties. Particularly, the effect of the crystal growth conditions and stabilizer amount in the range of 1.5–13.8 mol% of Yb2O3 are studied in terms of Rietveld analysis of powder X-ray diffraction data, electrical conductivity measured by impedance spectroscopy, absorption coefficient and refractive index measurements, Vickers microhardness (classical technique) as well as the plastic microhardness and effective elastic modulus (DSI—depth-sensing indentation technique). Potential applications of the investigated systems are discussed in view of the results obtained.  相似文献   

7.
Separated AlxIn1−xN quantum dots (QDs) embedded in amorphous AlN films have been produced by radio-frequency co-sputtering technique on silicon (1 1 1) and quartz glass substrates. The mean size and density of AlxIn1−xN QDs can be conveniently monitored by deposition parameters. Transparent electron microscope, and X-ray diffraction were used to detect the structure of the AlxIn1−xN QDs system; field-emission scanning-electron microscope was adopted to measure the surface morphology and anticipate the size of the QDs; X-ray photoelectronic spectroscopy was used to measure the stoichiometric ratios of the QDs.  相似文献   

8.
The Co-sublattice anisotropy in Lu2Co17 consists of four competitive contributions from Co atoms at crystallographically different sites in the Th2Ni17-type of crystal structure, which result in the appearance of a spontaneous spin-reorientation transition (SRT) from the easy plane to the easy axis at elevated temperatures. In order to investigate this SRT in detail and to study the influence of Si substitution for Co on the magnetic anisotropy, magnetization measurements were performed on single crystals of Lu2Co17−xSix (x=0−3.4) grown by the Czochralski method. The SRT in Lu2Co17 was found to consist of two second-order spin reorientations, “easy-plane”–“easy-cone” at TSR1≈680 K and “easy-cone”–“easy-axis” at TSR2≈730 K. Upon Si substitution for Co, both SRTs shift toward the lower temperatures in Lu2Co16Si (TSR1≈75 K and TSR2≈130 K) with the further onset of the uniaxial type of magnetic anisotropy in the whole range of magnetic ordering for Lu2Co17−xSix compounds with x>1 due to a weakening of the easy-plane contribution from the Co atoms at the 6g and 12k sites to the total anisotropy.  相似文献   

9.
Polycrystalline Nd1−xKxMnO3 (x=0.10–0.20) compounds have been prepared in single phase form with Pbnm space group. The magnetic properties were studied by measuring dc magnetization and ac susceptibility. They exhibit paramagnetic to ferromagnetic transition with transition temperature ranging from 116 to 128 K. The magnetization data have been analyzed by using Brillouin function model and by taking into account the ferromagnetic interaction. The effective spin contribution towards ferromagnetic interaction and spin canting angle have been estimated. The spin canting angle is found to decrease with increase in doping. Magneto-caloric effect (MCE) has been studied and the maximum change in entropy was found to be 1.76 J/kg K for 1 T field. Metal–insulator transition and colossal magnetoresistance of the order of 60% for 1 T field have been observed for x=0.20 sample.  相似文献   

10.
The metal–ferrite composites FexCo1−x/CoyFe1−yFe2O4 are synthesized by using disproportion of Fe (II) and reduction of Co (II) by Fe0 under hydrothermal condition. The size of the particles of the composites decreases as the [KOH] decreasing. The composites are measured by TEM and it can be deduced that when [KOH] = 0.1, the size of the alloy body-centered cubic (BCC) in composites is 20 ± 7 nm, the size of the Cobalt ferrite (spinel) is 170 ± 50 nm. The maximal value of the saturation magnetization (Ms) of the composite is about 100.14 emu/g, which is synthesized under Co (II)/Fe (II) = 0.05, [KOH] = 1 N, T = 150 °C and t = 3 h. The value of Hc of the composite synthesized under Co (II)/Fe (II) = 0.5, t = 3 h, T = 150 °C and [KOH] = 10.2 mol/L is about 2878.19 Oe. The Fe–Co alloy is synthesized through a reduction reaction of the composites in a flowing gaseous mixture. There is a maximal value (302.9 emu/g) of the Ms for the alloys generated at 1000 °C, which is the Co0.412Fe0.588 alloy.  相似文献   

11.
The Potts-like model is utilized to describe an alloy Gd1−xCx with x=0, 0.025, 0.06, 0.09, and the magnetic and magnetocaloric properties are calculated by Monte Carlo method. The effect of the local distortion of the lattice due to adulterated C atom on the exchange interaction between Gd atoms can be considered. The spontaneous magnetization, specific heat, and magnetic susceptibility are calculated. It is found that the magnetization at low temperature decreases but phase transition temperature from ferromagnetic to paramagnetic increases, as the concentration of the C atom in the system increases. Moreover, the specific heat and the susceptibility exhibit peaks at the transition temperature. For two external magnetic field h/J=0.25 and 10.0, the magnitude of the isothermal magnetic entropy change in binary alloy is more than in pure Gd system. Furthermore, the range of temperature of half peak in the curve of the magnetic entropy change becomes wide and the refrigerant capacity increases in the alloy.  相似文献   

12.
Nanoparticle Pb1−xFexSe (0.00  x  0.16) thin films have been deposited on quartz, glass and silicon substrates by chemical bath deposition technique. Structural and optical properties of the films with iron concentration 0.00  x  0.16 indicate that the films grow as single-phase Pb1−xFexSe ternary alloys with rocksalt structure and with direct optical band gaps (Eg) that increase with decrease in grain size and have values larger than 0.28 eV of the bulk PbSe. Average grain size in films grown at fixed bath temperature Tb of 85 °C is observed to decrease from 72 to 22 nm whereas lattice parameter is observed to increase from 6.12 to 6.14 Å with increase in Fe concentration from x = 0.00 to x = 0.16. The observed blue shift in film materials originates from quantum confinement in the nanograins. Nanoparticle Pb1−xFexSe/single crystal Si heterojunctions show rectifying behavior. On illumination of heterojunctions with visible light current is observed to increase in forward and reverse bias. This increase in current in the presence of visible light is considered to be due to carrier multiplication by Auger electron emission.  相似文献   

13.
We present an experimental approach to correlate optical and structural properties of Si/Si1−xGex multiple quantum wells as determined by photoluminescence (PL) and X-ray diffraction, respectively. The optical properties of the quantum wells were characterised by studying the dependence of luminescence on temperature and excitation density. An enhanced PL yield and an increased quenching temperature were observed for a sample grown at 650°C as compared to one grown at 600°C. Pronounced interdiffusion across the multiple quantum well interfaces as well as significant lattice distortions within the SiGe layers have been observed.  相似文献   

14.
The structural, electronic and thermodynamic properties of the SrS1–xOx ternary mixed crystals have been studied using the ab initio full potential linearized augmented plane wave (FP-LAPW) method within density functional theory. The effect of composition on lattice parameter, bulk modulus and band gap was investigated. The lattice constants from Vegard's law and the bulk modulus from linear concentration dependence were observed for the alloys. The microscopic origins of the gap bowing were explained by using the approach of Zunger and co-workers. The thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing ΔHm as well as the phase diagram. In addition to FP-LAPW method, the composition dependence of the refractive index and the dielectric constant was studied by different models.  相似文献   

15.
Lead-free multi-component ceramics (Bi1−xyNa0.925−xyLi0.075)0.5BaxSryTiO3 have been prepared by an ordinary sintering technique and their structure and electrical properties have been studied. All the ceramics can be well-sintered at 1100 °C. X-ray diffraction patterns shows that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) is formed at 0.04 < x < 0.08. As compared to pure Bi0.5Na0.5TiO3 ceramic, the coercive field EC of the ceramics decreases greatly and the remanent polarization Pr of the ceramics increases significantly after the formation of the multi-component solid solution. Due to the MPB, lower EC and higher Pr, the piezoelectricity of the ceramics is greatly improved. For the ceramics with the compositions near the MPB (x = 0.04–0.08 and y = 0.02–0.04), piezoelectric coefficient d33 = 133–193 pC/N and planar electromechanical coupling factor kP = 16.2–32.1%. The depolarization temperature Td reaches a minimum value near the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions at temperatures near/above Td.  相似文献   

16.
We have investigated the structural, magnetic and transport properties of La1−xBixMnO3 samples. As the Bi content increases, a structural transition from rhombohedral to pseudocubic and a magnetic phase transition from ferromagnetic ordering to cluster glass are identified. Metal–insulator (MI) transitions and large magnetoresistance (MR) effects are observed at low Bi doping levels, while insulating behavior of resistivity is found in the whole measured temperature range at high-doping levels. Two distinct ferromagnetic insulating (FI) states are found at low temperatures in this system. One can be suppressed and the other can be enhanced by applying magnetic fields. Possible reasons for the observed structural, magnetic phase transitions and changes of resistivity behavior with Bi doping are discussed.  相似文献   

17.
The kinetics of crystallization in Se80Te20−xPbx (x=0, 2, 6 and 10) glasses is studied by non-isothermal method using differential scanning calorimetry (DSC). DSC is performed at different heating rates of 5, 10, 15 and 20 K/min. The values of glass transition and crystallization temperatures are found to be composition and heating-rate dependent. From the heating-rate dependence of the glass transition and crystallization temperatures, the activation energy of crystallization (ΔEc) and order parameter (n) are calculated.  相似文献   

18.
Full-potential linearized augmented plane wave method (FP-LAPW) within density functional theory has been used to calculate structural, electronic and optical properties of Ca1−xSrxS, an alkali earth chalcogenide, with varying compositional parameter x in the range 0<x<1. Whereas the structural properties are discussed in terms of charge transfer between the two cations, calculated electronic band structure and density of states have been analyzed in terms of contribution from the S p, Ca d and Sr d states. Furthermore, we have calculated some optical properties such as real and imaginary parts of dielectric constant, ε(ω), and the calculated results have been discussed in comparison with the existing experimental data and other theoretical calculations.  相似文献   

19.
The effects of an electric field on the interband transitions in InxGa1−xAs/InyAl1−yAs coupled step quantum wells have been investigated both experimentally and theoretically. A InxGa1−xAs/InyAl1−yAs coupled step quantum well sample consisted of the two sets of a 50 Å In0.53Ga0.47As shallow quantum well and a 50 Å In0.65Ga0.35As deep step quantum well bounded by two thick In0.52Al0.48As barriers separated by a 30 Å In0.52Al0.48As embedded potential barrier. The Stark shift of the interband transition energy in the InxGa1−xAs/InyAl1−yAs coupled step quantum well is larger than that of the single quantum well, and the oscillator strength in the InxGa1−xAs/InyAl1−yAs coupled step quantum well is larger than that in a coupled rectangular quantum well. These results indicate that InxGa1−xAs/InyAl1−yAs coupled step quantum wells hold promise for potential applications in optoelectron devices, such as tunable lasers.  相似文献   

20.
The crystal structure and magnetic properties of a series of ordered double perovskite oxides (Sr2−3xLa2xBax)FeMoO6 (0x0.3) have been investigated. X-ray powder diffraction reveals that the crystal structure of the compounds changes from a tetragonal I4/m lattice to a cubic lattice around x=0.2. Though the nominal average size of the A site cation of (Sr2−3xLa2xBax)FeMoO6 is designed to be almost independent of x, the refinements of the crystal structure show that the lattice constants increase with x in both the tetragonal and the cubic phase regions due to electron doping. As the x increases, the degree of cationic ordering on the B site is decreased pronouncedly, while the Curie temperature of the compounds is nearly unchanged. The saturation magnetization of the compounds decreases with x and shows a linear dependence on the degree of cation ordering. The resistivity of the parent compound shows a semiconducting behavior below room temperature, but those of the doped samples exhibit a metal–semiconductor transition. A correlation between the resistivity and metal-semiconducting transition temperature (TM−S) is observed. The resistivity and TM−S of the compounds decrease with x for x0.2 and increase for x0.2. Magnetoresistance of the compounds is reduced by the La/Ba doping. All these observations can be understood based on the interplay of the electron doping, change in bandwidth and the anti-site defect concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号