首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to measure normal cerebrospinal fluid (CSF) pulsations within the intracranial and upper cervical subarachnoid spaces and the ventricular system. Phase contrast cine MR sequences were performed in sagittal and axial planes on 13 volunteers with flow encoding in the craniocaudal direction. CSF pulsations displayed considerable variations in healthy subjects, depending both on measurements localization and subjects, with CSF peak velocities ranging from 0 to 7 cm/s. In the subarachnoid spaces, the highest velocities occurred in the anterior location and increased from the cerebellar pontine angle cisterns towards the lower cervical spaces. In the ventricular system, the highest velocities occurred through the aqueduct of Sylvius. CSF flow within the third ventricle seemed to reflect a circular motion. There was a caudal net CSF flow in the aqueduct whereas in the upper cervical spaces net CSF flow was caudal anteriorly and cranial laterally. Velocity profiles of CSF pulsations demonstrated arterial morphology. After the R wave, caudal systolic motion was first observed in the posterior subarachnoid spaces, soon after in the anterior subarachnoid spaces and later in the ventricular system. Considering the morphology of CSF pathways, three successively initiated phenomena may explain the temporal course of CSF motion: the systolic expansion of the main arteries at the base of the brain, the systolic expansion of the cerebrospinal axis and, finally, the systolic expansion of the choroid plexuses.  相似文献   

2.
A new pulse sequence designed for magnetic resonance imaging of the entire thoracic cavity is described. This sequence, called 3DPAUSE, is a rapid three-dimensional Fourier transform (3DFT) sequence with periodic pauses for breathing and additional rf pulses after each pause to restore the magnetization to steady-state before data acquisition resumes. Cardiac motion artifacts are effectively removed by signal averaging. Respiratory motion artifacts are removed by breath hold. Image artifacts caused by an inadequate number of pauses or by inappropriate placement of the pauses within a scan are shown, and ways to avoid these artifacts are discussed. 3DPAUSE provides the ability to acquire three-dimensional arrays in the thoracic cavity with minimal artifacts from respiratory and cardiac motions in a clinically reasonable time.  相似文献   

3.
31P-MR-Spectroscopy was performed in 28 patients with focal (n = 23) and diffuse (n = 5) liver disease and in 18 healthy volunteers. The spectra were obtained with a whole body scanner operating at 1.5 T by using a surface coil. To get T1-weighted 31P-spectra a short TR of 600 msec was taken, because T1-weighted spectra of focal liver disease were more significantly different from spectra from healthy volunteers than density weighted ones. The VOI from patients with focal superficial alterations showed a mean volume of 172 ml, with diffuse liver disease 196 ml, and from volunteers 158 ml. Focal tumors filled up the VOI on an average of 70%. This investigation demonstrated that PME/β-ATP- and PDE/β-ATP-ratios were sensitive indicators for focal liver disease. As a result of this study we could establish a significant increase of PME/β-ATP- (0.75 ± 0.30) and PDE/β-ATP-ratios (1.68 ± 0.62) in patients with superficial focal liver metastases (n = 19) compared to the control group (PME/β-ATP: 0.49 ± 0.17, PDE/β-ATP: 1.24 ± 0.24; t-test: p < 0.02). Patients with a hemangioma (n = 1), liver infarction (n = 1), empyema of gallbladder (n = 1) and a hepatic involvement by a malignant lymphoma (n = 1) showed a similar increase of PME/β-ATP and/or PDE/β-ATP. Up to now spectral changes seemed to be non-specific. The ratios of 31P metabolites of the cirrhoses (n = 4) and the fatty liver (n = 1) did not show any characteristic changes versus the volunteers.  相似文献   

4.

Purpose

To evaluate the clinical outcomes of conservative management by observation with MRI of patients with branch-duct intraductal papillary mucinous neoplasms (BD-IPMNs).

Materials and Methods

Twenty-three consecutive patients, who were followed up by MRI with magnetic resonance cholangiopancreatography (MRCP) over a period of more than 9 months after initial MRI examinations, were enrolled in this study. On MRI, number of lesions, the maximum diameter of BD-IPMNs, lesion location, the presence of associated dilatation of main pancreatic duct (MPD), the presence of enhancing mural nodules within the lesion and the presence of interval change were retrospectively reviewed on initial and follow-up MR images in consensus by two radiologists. All patients were evaluated to search for evidence of malignant progression of disease.

Results

The follow-up period ranged from 10 to 96 months (mean, 37 months). On initial MRI with MRCP, a total of 39 lesions were found in 23 patients. The maximum diameter of BD-IPMNs ranged between 6 and 32 mm, with a mean of 12 mm. Thirty-four lesions (87%) of 19 patients remained unchanged in the maximum diameter. Five lesions (13%) of four patients showed an increase in the maximum diameter. Enhancing mural nodules were not found in any individual, neither on the initial MRI study nor on the follow-up studies. There was no patient who had evidence of local aggressive growth of tumor or evidence of metastases to distant sites.

Conclusion

Our study suggests that branch-duct IPMNs without enhancing mural nodules are essentially benign and should be managed nonoperatively through observation by MRI.  相似文献   

5.
Flow-suppressed, subsecond FLASH MR images of the normal human heart have been obtained from single cardiac cycles using a 2.0-T whole-body MRI/MRS system (Siemens Magnetom) equipped with conventional 10 mT m−1 gradients. The present results demonstrate further technical improvements as compared to a previous report on the same subject (Magn. Reson. Med. 13:150–157; 1990). Measuring times of 139 msec and 209 msec were achieved by reducing the repetition time to TR = 4.36 msec (TE = 2.8 msec) and the spatial resolution to 32 × 128 or 48 × 128 measured data points, respectively. The flip angle was optimized to 12°. Spatial pre-saturation of 60 mm thick sections adjacent to the imaging plane resulted in a suppression of the blood signal and a clear delineation of the myocardium. Oblique rotation of the imaging slice provides convenient access to the anatomical long axis and short axis views of the heart. EKG-triggered images from separate heartbeats but at different cardiac phases demonstrate that the effective time resolution is considerably less than the actual imaging time.  相似文献   

6.
The authors describe the MRI findings, including diffusion-weighted imaging findings, of histopathologically proven uterine carcinosarcoma in four postmenopausal women. In three of four patients, diffusion-weighted images clearly revealed hypointense areas corresponding to hypocellular regions caused by intratumoral necrosis, and apparent diffusion coefficient (ADC) mapping images indicated that necrotic areas had high ADC values. In the remaining patient, diffusion-weighted and ADC mapping images clearly distinguished components of adenocarcinoma from sarcoma. In all patients, diffusion-weighted and ADC mapping images precisely reflected histopathological findings. Diffusion-weighted images were found to demonstrate complicated tissue components in carcinosarcomas of the uterus, and thus, which may be useful for the diagnosis of this disease.  相似文献   

7.
Fifty-four independent scans were performed in two volunteers covering one anatomic region in each (the brain and knee) with the purpose of ascertaining the agreement between predicted and measured signal-to-noise ratios (SNR). Systematically varied parameters were number of excitations (NEX), field of view (FOV), section thickness (dz), and the number of phase-encoding steps (Ny). Correlation coefficients of measured versus predicted SNR were 0.82 and 0.86, respectively, in the anatomies studied. Significantly improved correlations were found for data subpopulations in which NEX was held constant. To assess the criteria guiding reader preference, a blinded study was performed in which radiologists were asked to rate images from least to most desirable. In order to quantitatively determine the criteria for reader preference, plots of mean rating versus SNR, voxel volume, and an image quality index [IQI = SNR/(voxel volume)] were performed. The latter was found to be a better predictor of reader preference than either SNR or spatial resolution alone. The data suggests T1-weighted scan protocols yielding SNR of approximately 20 are preferable with any excess SNR being traded for smaller voxel size or shorter scan times.  相似文献   

8.
Thirteen patients with abnormal brain MR scans attributable to treatment-induced injury were retrospectively reviewed. All patients were treated with radiation therapy and 62% received chemotherapy. Five patients were graded as having severe white matter (WM) changes, four had moderate WM changes, and four had mild WM changes. CT was generally equivalent to MR in evaluation of severe and moderate WM abnormalities, whereas MR was superior to CT in detection of mild WM abnormalities. In general, the severity of changes depicted by MR/CT correlated with the extent of neurologic dysfunction. The most severe changes were seen in those patients treated with combination irradiation and chemotherapy.  相似文献   

9.
Adrenal hemangioma is considered a rare tumor and is pathologically similar to hemangiomas found elsewhere in the body. Magnetic resonance imaging (MRI) findings thought to be highly suggestive of this neoplasm are presented. Correlation with pathologic findings in this case, as well as imaging and pathologic findings in other reported cases, is provided.  相似文献   

10.

Objective

To determine whether metabolite ratios in multivoxel 3D proton MR spectroscopy (1H MRS) is different between low-grade and high-grade gliomas and may be useful for glioma grading.

Materials and Methods

Thirty-nine patients (23 male and 16 female; 22-75 years old; mean age, 44.92±12.65 years) suspected of having gliomas underwent 3D 1H MRS examinations. Metabolite ratios [choline (Cho)/creatine (Cr), N-acetylaspartate (NAA)/Cr and Cho/NAA] were measured. Tumor grade was determined by using the histopathologic grading. Receiver operating characteristic analysis of metabolite ratios was performed, and optimum thresholds for tumor grading were determined. The resulting sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for identifying high-grade gliomas were calculated.

Results

Diagnostic-quality 3D 1H MRS with readily quantifiable Cho, Cr and NAA peaks was obtained in 94.87% of the cases. The Cho/Cr and Cho/NAA ratios were significantly higher in high-grade than in low-grade glioma (P<.001), whereas the NAA/Cr ratios were significantly lower in high-grade than in low-grade glioma (P<.001). Receiver operating characteristic analysis demonstrated a threshold value of 2.04 for Cho/Cr ratio to provide sensitivity, specificity, PPV and NPV of 84.00%, 83.33%, 91.30% and 71.43%, respectively. Threshold value of 2.20 for Cho/NAA ratio resulted in sensitivity, specificity, PPV and NPV of 88.00%, 66.67%, 84.62% and 72.73%, respectively. Overall diagnostic accuracy was not statistically significantly different between Cho/Cr and Cho/NAA ratios (χ2=0.093, P=.76).

Conclusion

Metabolite ratios of low-grade gliomas were significantly different from high-grade gliomas. Cho/Cr and Cho/NAA ratios could have the superior diagnostic performance in predicting the glioma grade.  相似文献   

11.
This study investigated the value of information from both magnetic resonance imaging and magnetic resonance spectroscopic imaging (MRSI) to automated discrimination of brain tumours. The influence of imaging intensities and metabolic data was tested by comparing the use of MR spectra from MRSI, MR imaging intensities, peak integration values obtained from the MR spectra and a combination of the latter two. Three classification techniques were objectively compared: linear discriminant analysis, least squares support vector machines (LS-SVM) with a linear kernel as linear techniques and LS-SVM with radial basis function kernel as a nonlinear technique. Classifiers were evaluated over 100 stratified random splittings of the dataset into training and test sets. The area under the receiver operating characteristic (ROC) curve (AUC) was used as a global performance measure on test data. In general, all techniques obtained a high performance when using peak integration values with or without MR imaging intensities. For example for low- versus high-grade tumours, low- versus high-grade gliomas and gliomas versus meningiomas, the mean test AUC was higher than 0.91, 0.94, and 0.99, respectively, when both MR imaging intensities and peak integration values were used. The use of metabolic data from MRSI significantly improved automated classification of brain tumour types compared to the use of MR imaging intensities solely.  相似文献   

12.
A rotating phantom for the study of flow effects in MR imaging   总被引:2,自引:0,他引:2  
A common type of phantom used for the study of flow effects in MR imaging is the tube phantom, where a liquid passes through a set of tubes placed in the main magnetic field of an MR scanner. Among the disadvantages with this type of phantom are that a distribution of velocities is present in each tube, and that quantifications of flow effects using tube phantoms may be very time-consuming. In this work, we describe the design and the properties of a rotating wheel flow phantom used for quantification of the effects of flow through the imaging plane as well as in the imaging plane. The proposed phantom is constructed as a rotating gel-filled wheel, surrounded by static volumes filled with the same gel, and the evaluation of the information from rotating and static parts is made with a specially designed computer program. The phantom can be used as a plug flow phantom covering simultaneously an interchangeable velocity interval, which at present has the range −52 mm/s, +52 mm/s. It is shown that the phantom gives adequate information on the dependence of pixel content on first-order motion in MR modulus and phase images. Among the fields of application are rapid calibration of MR imaging units for flow determination using phase information, as well as testing of pulse sequence characteristics and verification of theoretical predictions concerning the flow dependence in MR images.  相似文献   

13.
Magnetic resonance spectroscopy (MRS) has long been considered the golden standard for non-invasive measurement of tissue fat content. With improved techniques for fat/water separation, imaging has become an alternative to MRS for fat quantification. Several imaging models have been proposed, but their performance relative to MRS at very low fat contents is yet not fully established. In this work, imaging and spectroscopy were compared at 1.5 T and 3 T in phantoms with 0-3% fat fraction (FF). We propose a multispectral model with individual a priori R2 relaxation rates for water and fat, and a common unknown R2′ relaxation. Magnitude and complex image reconstructions were also compared. Best accuracy was obtained with the imaging method at 1.5 T. At 3 T, the FFs were underestimated due to larger fat-water phase shifts. Agreement between measured and true FF was excellent for the imaging method at 1.5 T (imaging: FFmeas= 0.98 FFtrue− 0.01%, spectroscopy: FFmeas= 0.77 FFtrue+ 0.08%), and fair at 3 T (imaging: FFmeas= 0.91 FFtrue− 0.19%, spectroscopy: FFmeas= 0.79 FFtrue+ 0.02%). The imaging method was able to quantify FFs down to approx. 0.5%. We conclude that the suggested imaging model is capable of fat quantification with accuracy and precision similar to or better than spectroscopy and offers an improvement vs. a model with a common R2* relaxation only.  相似文献   

14.
An MR imaging technique has been developed producing head and body images of diagnostic quality in only a few seconds acquisition time. The Fourier type imaging technique uses excitation with relatively small excitation angels, echoes produced by gradient inversion, and extremely fast profile repetition. A typical result at 0.5 T is an artifact-free head image of 128 x 128 resolution, 10 mm slice thickness in an acquisition time of 2 seconds.  相似文献   

15.

Objective

The objective was to clarify the clinical factors that might affect the degree of hepatic parenchymal enhancement at gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance (MR) imaging.

Materials and Methods

A total of 84 patients with (n=63) and without chronic liver disease (n=21) underwent Gd-EOB-DTPA-enhanced MR imaging. Contrast-enhanced MR images of hepatobiliary phase (HP) were obtained at 20 min after Gd-EOB-DTPA administration. The relative enhancement (RE) of liver parenchyma at 20 min HP was calculated from region of interest measurements at each patient. Then, these results were correlated with various clinical parameters using Pearson correlation coefficient or Spearman rank correlation coefficient. Furthermore, the predictor of the degree of hepatic parenchymal enhancement was determined using multiple regression analysis.

Results

The presence or absence of chronic liver disease (P=.002), ascites (P=.005) and splenomegaly (P=.027), and the values of prothrombin activity (P=.008), total bilirubin (T-Bil) (P=.001), albumin (P=.001), aspartate aminotransferase (AST) (P=.002) and cholinesterase (P=.007) were significantly correlated with the RE of liver parenchyma at 20 min HP. Among these parameters, increases of T-Bil (P=.011 to .028) and AST (P=.018 to .049) were predictors of decreased hepatic parenchymal enhancement.

Conclusions

Hepatic parenchymal enhancement of Gd-EOB-DTPA was affected by various clinical parameters. Impaired hepatobiliary enhancement may be predicted by routine biochemical tests, such as T-Bil and AST.  相似文献   

16.
The purpose of this study was to investigate the feasibility of diffusion-weighted imaging (DWI) in detecting synovitis of wrist and hand in patients with rheumatoid arthritis (RA) and evaluate its sensitivity, specificity and accuracy as compared to T2-weighted imaging (T2WI) with short tau inversion recovery (STIR) with the reference standard contrast-enhanced magnetic resonance imaging (CE-MRI). Twenty-five patients with RA underwent MR examinations including DWI, T2WI with STIR and CE-MRI. MR images were reviewed for the presence and location of synovitis of wrist and hand. The sensitivity, specificity and accuracy of DWI and T2WI with STIR were calculated respectively and then compared. All patients included in this study completed MR examinations and yielded diagnostic image quality of DWI. For individual joint, there was good to excellent inter-observer agreement (k = 0.62–0.83) using DWI images, T2WI with STIR images and CE-MR images, respectively. There was a significance between DWI and T2WI with STIR in analyzing proximal interphalangeal joints II–V, respectively (P < 0.05). The k-values for the detection of synovitis indicated excellent overall inter-observer agreements using DWI images (k = 0.86), T2WI with STIR images (k = 0.85) and CE-MR images (k = 0.91), respectively. Overall, DWI demonstrated a sensitivity, specificity and accuracy of 75.6%, 89.3% and 84.6%, respectively, for detection of synovitis, while 43.0%, 95.7% and 77.6% for T2WI with STIR, respectively. DWI showed positive lesions much better and more than T2WI with STIR. Our results indicate that DWI presents a novel non-invasive approach to contrast-free imaging of synovitis. It may play a role as an addition to standard protocols.  相似文献   

17.
Superparamagnetic iron oxide particles (SPIOs) are usually referred to as T2 MR contrast agents, reducing signal intensity (SI) on T2-weighted MR images (negative enhancement). This study reports the original use of SPIOs as T1-enhancing contrast agents, primarily assessed in vitro, and then applied to an in vivo investigation of a myocardial perfusion defect. Using a strongly T1-weighted subsecond MR sequence with SPIOs intravenous (IV) bolus injection, MR imaging of myocardial vascularization after reperfusion was performed, on a dog model of coronary occlusion followed by reperfusion. Immediately after the intravenous bolus injection of 20 μmol/kg of SPIOs, a positive signal intensity enhancement was observed respectively, in the right and left ventricular cavity and in the nonischemic left myocardium. Moreover, compared to normal myocardium, the remaining ischemic myocardial region (anterior wall of the left ventricle) appeared as a lower and delayed SI enhancing area (cold spot). Mean peak SIE in the nonischemic myocardium (posterior wall) was significantly higher than in the ischemic myocardium (anterior wall) (110 ± 23% vs. 74 ± 22%, Mann-Whitney test < 1%, n1 = 6, n2n1 = 0, U > 2). In conclusion, the T1 effect of SPIOs at low dose, during their first intravascular distribution, suggests their potential use as positive markers to investigate the regional myocardial blood flow and some perfusion defects such as the “no-reflow phenomenon”.  相似文献   

18.
Recently compressed sensing (CS) has been applied to under-sampling MR image reconstruction for significantly reducing signal acquisition time. To guarantee the accuracy and efficiency of the CS-based MR image reconstruction, it necessitates determining several regularization and algorithm-introduced parameters properly in practical implementations. The regularization parameter is used to control the trade-off between the sparsity of MR image and the fidelity measures of k-space data, and thus has an important effect on the reconstructed image quality. The algorithm-introduced parameters determine the global convergence rate of the algorithm itself. These parameters make CS-based MR image reconstruction a more difficult scheme than traditional Fourier-based method while implemented on a clinical MR scanner. In this paper, we propose a new approach that reveals that the regularization parameter can be taken as a threshold in a fixed-point iterative shrinkage/thresholding algorithm (FPIST) and chosen by employing minimax threshold selection method. No extra parameter is introduced by FPIST. The simulation results on synthetic and real complex-valued MRI data show that the proposed method can adaptively choose the regularization parameter and effectively achieve high reconstruction quality. The proposed method should prove very useful for practical CS-based MRI applications.  相似文献   

19.

Purpose

To minimize user and vendor dependence of the spectrum processing of prostate spectra, to measure the ratio of choline (Cho) plus creatine (Cr) to citrate (Cit) in the prostate tissue of normal volunteers and cancer patients, and to compare the results with pathologic findings after radical prostatectomy.

Materials and methods

Four healthy volunteers and 13 patients with prostate cancer were measured. Measurements were performed using two-dimensional magnetic resonance spectroscopic imaging (MRSI) and endorectal coil. A standard vendor's spectrum processing approach has been modified. An original feature of this methodology was the combination of vendor-optimized and user-independent spectrum preprocessing in the scanner and user-independent quantitation in the environment of an MRUI software package. (Cho+Cr)/Cit ratio was used for the classification of prostate tissue. Results were compared with histopathology after radical prostatectomy.

Results

Eight of 13 cancer patients were classified as suspicious or very suspicious for cancer at spectroscopy, three were ambiguous for cancer and two patients were evaluated as false negative. A considerable overlap of metabolite ratios at various Gleason score was found.

Conclusion

The proposed spectrum processing has the potential to improve the accuracy and user independency of the (Cho+Cr)/Cit quantitation. This study confirmed the previous results that a considerable overlap of (Cho+Cr)/Cit ratios exists at various Gleason score levels.  相似文献   

20.
A method for imaging of chemical shift or magnetic field distributions   总被引:1,自引:0,他引:1  
A phase encoding method for imaging of chemical shift or magnetic field distributions is described. The method utilizes the spin-echo principle and the time period between signal collection and excitation is constant but the time period between excitation and the 180 degrees pulse is varied by constant steps. The method is relatively easy to apply with the Fourier or projection reconstruction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号