首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knudsen effusion studies of the sublimation of polycrystalline SnS, prepared by annealing and chemical vapor transport, have been performed employing vacuum micro-balance techniques in the temperature range 733–944 K and at pressures ranging from about 6 × 10?3 to 11 Pa.The third-law heats of sublimation and second-law entropy of reaction SnS(s) = SnS(g) were determined to be ΔH0298 = 220.4 ± 3.0 kJ mole? and ΔS0298 = 162.4 ± 4.5 J K?1 mole?1. From these data the standard heat of formation and absolute entropy of SnS(s) were calculated to be ?102.9 ± 4.0 kJ mole?1 and 79.9 ± 6.0 J K?1, respectively.  相似文献   

2.
The vapour pressure of uracil was measured in the temperature range 452–587 K using different techniques and the pressure—temperature equation log P(kPa) = 12.13 ± 0.50 — (6823 ± 210)/T was derived. The thermodynamic functions of gaseous and solid uracil were also evaluated through spectroscopic and calorimetric measurements. The sublimation enthalpy of uracil, ΔH0298 = 131 ± 5 kJ mole?1, was derived from second and third law treatment of the vapour data.  相似文献   

3.
By using different techniques the vapor pressure of ferrocene, mono-acetyl ferrocene and 1,1′-di-acetyl ferrocene was measured. The following pressure—temperature equations were derived ferrocene log P(kPa)= 9.78 ± 0.14 ? (3805 ± 46)/T mono-acetyl ferrocene log P(kPa) = 14.83 ± 0.14 ? (5916 ± 48)/T 1,1′-di-acetyl ferrocene log P(kPa) = 8.82 ± 0.11 ? (4289 ± 44)/T By second- and third-law treatment of the vapor data the ΔH0sub,298 = 74.0 ± 2.0 kJ mole?1 for the sublimation process of ferrocene was calculated and compared with the literature data. For the sublimation enthalpy of mono- and 1,1′-di-acetyl ferrocene the values ΔH0sub,298 = 115.6 ± 2.5 kJ mole?1 and ΔH0sub,298 = 91.9 ± 2.5 kJ mole?1 were derived by second-law treatment. Thermal functions of these compounds were also estimated.  相似文献   

4.
The vapor pressures of benzoylferrocene and 1,1′-dibenzoylferrocene were measured by torsion-effusion technique. The following pressure-temperature equations were derived benzoylferrocene log P(kPa) = 10.75±0.22?(5314±82)/T 1,1′-dibenzoylferrocene log P(kPa) = 9.29±0.24?(4898±91 )/T Second-law treatment of the experimental data yielded the sublimation enthalpies for benzoylferrocene and 1,1′-dibenzoylferrocene: ΔH0sub,298 = 116.3±6.0 kJ mole?1 and ΔH0sub,298 = 109.3±6.0 kJ mole?1 respectively. Thermal functions of these compounds were also estimated.  相似文献   

5.
Enthalpies of sublimation for pyrazole and imidazole have been obtained by calorimetry at 298.15K. The ΔH0sub (298.15 K) values for these two compounds are, respectively, 69.16 ± 0.32 and 74.50 ± 0.40 kJ mole?1. From literature data obtained by combustion calorimetry for ΔH0f (c, 298.15 K), the enthalpies of formation of these compounds in the gaseous state (pyrazole: 185.1 ± 2.3 kJ mole?, imidazole: 133.0 ± 1.7 kJ mole?1) have been derived. Several energy values related to the molecular structure of these two compounds (as resonance energy, enthalpy of isomerization, …) have been determined. The study of pyrazole has enabled us to contribute to the evaluation of some characteristics of the NN bond.  相似文献   

6.
Literature data on the thermodynamics of redox nicotinamide adenine dinucleotide (NAD) dependent reactions have been analyzed. It has been established that for the redox reaction of NAD
where all substances except H2 are in the aqueous buffer with the ionization enthalpy equal to zero, the most reliable thermodynamic parameters should be considered as: ΔH(298.15 K; pH 7)=?27.4±1.7 kJ mole?1; ΔG (298.15K; pH 7)=±17.8 kJ mole?1. From the above thermodynamic parameters of the reaction ΔH, ΔG and ΔS for reactions of NAD with natural substrates, synthetic mediators and some inorganic compounds have been calculated.  相似文献   

7.
The enthalpy of sublimation of benzamide was obtained by calorimetry in the range 323<T (K)<350. From values of ΔHsub(T)=f(T), it was possible to determine ΔH0sub (298.15 K)=101.7±1.0 kJ mole?1. Using previous data on ΔH0f (c, 298.15 K) obtained by combustion calorimetry, the value of ΔH0f (g, 298.15 K)=?100.9±1.2 kJ mole?1 was calculated. With the use of energetical values concerning thioacetamide, thiobenzamide and thiourea, on the one hand, and acetamide, benzamide and urea, on the other, a comparative study was made.  相似文献   

8.
The enthalpy of formation at 298.15 K of the polymer Al13O4(OH)28(H2O)3+8 and an amorphous aluminium trihydroxide gel was studied using an original differential calorimetric method, already developed for adsorption experiments, and aluminium-27 NMR spectroscopy data. ΔHf “Al13” (298.15 K) = ? 602 ± 60.2 kJ mole?1 and ΔHf Al(OH)3 (298.15 K) = ? 51 ± 5 kJ mole?1. Using theoretical values of ΔGR “Al13” and ΔGR Al(OH)3, we calculated ΔGf “Al13” (298.15 K) = ? 13282 kJ mole?1; ΔSf “Al13” (298.15 K) = + 42.2 kJ mole?1; ΔGf Al(OH)3 (298.15 K) = ? 782.5 kJ mole?1; and ΔSf Al(OH)3 (298.15 K) = + 2.4 kJ mole?1.  相似文献   

9.
A low-temperature quartz resonator method for determining the enthalpy of sublimation has been described. A quartz crystal cooled to the temperature of liquid nitrogen becomes a sensitive microbalance. The method permits the value of ΔHsub to be obtained within 4–5 h and is especially useful in measuring ΔHsub values of substances with low saturated vapour pressures. The following values of ΔHsub were received for standard substances: benzoic acid, ΔHsub = (90.8±0.6) kJ mol?1 at 293–319 K: naphthalene, ΔHsub = (72.3±0.8) kJ mol?1at 293–331 K.  相似文献   

10.
Using three different techniques, the vapour pressure of α-iodonaphthalene was measured in the temperature range 322–422 K. The pressure equation log P(kPa) = 8.82 ± 0.29 ? (3719 ± 300) /T, was determined. The enthalpy of vaporization change, ΔH0298 = 69.4 ± 4.0 kJ mole?1, was determined as the average of the results obtained by second-and third-law treatment of the experimental data. Antoine's constants, A = 6.258, B = 2010 and C = 171, were also derived.  相似文献   

11.
The binary system citric acid-water has been investigated with static vapour pressure measurements, adiabatic calorimetry, solution calorimetry, solubility measurements and powder X-ray measurements. The data are correlated by thermodynamics and a large part of the phase diagram is given. Molar heat capacities of citric acid are given from 90 to 330 K and for citric acid monohydrate from 120 to 300 K. The enthalpy of compound formation ΔcomH (298.15 K)=(?11.8±1) kJ mole?1.  相似文献   

12.
The chemistry and thermodynamics of vaporization of CdGa2S4(s), CdGa8S13(s), and Ga2S3(s) were studied by computer-automated, simultaneous Knudsen-effusion and torsion-effusion, vapor pressure measurements in the temperature range 967–1280 K. The vaporization was incongruent with loss of Cd(g) + 1/2 S2(g) and production of CdGa8S13(s), a previously unknown compound, in equilibrium with CdGa2S4(s), until the solid became CdGa8S13 only. Then, incongruent vaporization continued with production of Ga2S3(s) until the solid was Ga2S3 only. The latter vaporized congruently. The ΔH°(298 K) of combination of one mole of CdS(s) with one mole of Ga2S3(s) to give CdGa2S4(s) was ?22.6 ± 0.9 kJ mole?1. The 2H2(298 K) of combination of one mole of CdS(s) with four moles of Ga2S3(s) to give CdGa8S13(s) was ?25.5 ± 1.1 kJ mole?1. The 2H2(298K) of CdGa8S13(s) with respect to disproportionation into CdGa2S4(s) and 3 Ga2S3(s) was ?2.8 ± 0.6 kJ mole?1. CdGa8S13(s) was not observed at room temperature. The 2H2(298 K) of vaporization of the residual Ga2S3(s) was 663.4 ± 0.8 kJ mole?1, which compared well with a value of 661.4 ± 0.3 kJ mole?1 already available from the literature. Implications of small variations in stoichiometry of compounds in this study were observed and are discussed.  相似文献   

13.
The dimer-monomer reactions were investigated for the system cis and transo,o'-azodioxytoluene-o-nitrosotoluene in acetonitrile solvent. For the reaction cis dimer-monomer the following thermodynamic and activation parameters have been derived: ΔH°=58.5±2.5 kJ mole?1, ΔS°=206.2±3.8 J mole?1 K?1, ΔH=63.6±3.3 kJ mole?1, ΔS=6.3±0.3 J mole?1 K?1. The corresponding values for the reaction trans dimer-monomer are: ΔH°=45.6±2.1 kJ mole?1, ΔS°=162.7±7.1 J mole?1 K?1, ΔH=80.8±2.9 kj mole?1, ΔS=-13.4±0.8 mole?1 K?1. There is no evidence of a direct cis-trans isomerization (i.e. a reaction not proceeding via the monomer). NMR and various perturbation techniques monitoring the visible absorption of the monomer were employed.  相似文献   

14.
Knudsen effusion studies of the sublimation of polycrystalline SnSe and SnSe2, prepared by annealing and chemical vapor transport reactions, respectively, have been carried out using vacuum microbalance techniques in the temperature ranges 736–967 K and 608–760 K, respectively. From experimental mass-loss data for the sublimation reaction SnSe(s) = SnSe(g), the recommended values for the heat of formation and absolute entropy of SnSe(s) were calculated to be ΔH°298,f = ?86.4 ± 9.9 kJ · mol?1 and S°298 = 89.0 ± 7.1 J · K?1 · mol?1. From mass-loss data for the decomposition reaction \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm SnSe}_{\rm 2} ({\rm s)} = {\rm SnSe(s)} + \frac{1}{{\rm x}}{\rm Se}_{\rm x} ({\rm g) (x} = 2 - 8) $\end{document}, the recommended values for the heat of formation and absolute entropy of SnSe2(s) were determined to be ΔH°298,f = ?118.1 ± 15.1 kJ · mol?1 and S°298 = 111.8 ± 11.8 J · K?1 mol?1.  相似文献   

15.
From the heats of solution for Ba(NO3)2 (c), KNO3 (c; II), and Ba(NO3)2 · 2 KNO3 (c) the heat of combination of the double salt from its component salts ΔH 298 0 =(?2.168±0.028) kcal · mole?1 and the standard heat of formation ΔH f,298 0 =?474.75 kcal · mole?1 have been determined. The values of derived thermodynamic properties are summarized in table 4.  相似文献   

16.
The heats of formation of some aluminium-barium alloys have been determined by drop calorimetry at high temperature. The heats of mixing of pure liquid Al and Ba to give the liquid alloy are ΔmH(xBa=O.056, 1215 K)=?6.6 kJ mole?1 and ΔmH(xBa=O.333, 1215 K)=?31.0 kJ mole-1. To measure its heat of formation, the solid compound Al4Ba was precipitated by addition of pure barium from a liquid (Al, Ba) bath. It was found that ΔfH(Al0.8BaO.2, solid, 1215 K)=-(37.1 ? 1.5) kJ mole?1 with reference to the pure metals in the solid state.  相似文献   

17.
The molar heats of dehydration, Δdehyd., of concentrated sodium chloride and potassium chloride solutions were measured with a differential scanning calorimeter in the scanning and isothermal modes. The overall Δdehyd. was found to be 44.5 and 44.3 kJ mole?1 H2O for NaCl and KCl solutions respectively. There is an astonishing difference between concentrated NaCl and KCl solutions in the way water is lost. The number of fractions of heat dehydration were 2 for NaCl and 3 for KCl. The excess Δdehyd. was about 10 kJ mole?1 H2O for fraction II of NaCl, and 17 and 55 kJ mole?1 H2O for fractions II and III, respectively, of KCl.  相似文献   

18.
The heat of dissolution of potassium chlorate in water at 298.15 K has been measured on an LKB 8700-1 calorimeter in the concentration range 0.063–0.659 m. The concentration dependence of the measured data was fitted by an empirical equation ΔHm (kJ mole?1) = 41.3538 + 1.8626m12 ? 6.4300m which was derived from our and Andauer—Lange data. The heat of crystallization calculated from this dependence was ΔHcryst. = 34.7 ± 0.5 kJ mole?1, which agrees with data calculated for potassium chlorate from solubility and activity data.  相似文献   

19.
The vaporization of praseodymium triiodide was studied by high-temperature mass spectrometry. Monomeric (PrI3) and dimeric (Pr2I6) molecules and the PrI 4 ? and Pr2I 7 ? negative ions were recorded in saturated vapor over the temperature range 842–1048 K. The partial pressures of neutral vapor components were determined. The enthalpies of sublimation Δs H o(298.15 K) in the form of monomers (291 ± 10 kJ/mol) and dimers (400 ± 30 kJ/mol) were calculated by the second and third laws of thermodynamics. The equilibrium constants of ion-molecular reactions were measured and the enthalpies of the reactions determined. The enthalpies of formation Δf H o(298.15 K) of molecules and ions in the gas phase were calculated (?373 ± 11, ?929 ± 31, ?865 ± 25, and ?1433 ± 48 kJ/mol for PrI3, Pr2I6, PrI 4 ? , and Pr2I 7 ? , respectively).  相似文献   

20.
The changes of enthalpy for the reactions
  1. Sn(c)+2I2(c)+4165 CS2(l)=[SnI4; 4165 CS2] (sol.),
  2. SnI4(c)+4223 CS2(l)=[SnI4; 4223 CS2] (sol.)
At 298,15 K have been found by solution calorimetry to be ΔH 1=(?46.7±0.3) and ΔH 2=(+3.2±0.1) kcal Mol?1, resp. Neglecting the heat of dilution which is approximately zero these values give ΔH f o (SnI4; c; 298 K)=9?49.9±0.4) kcal Mol?1 for the enthalpy of formation of SnI4. From existing literature data the standard entropy is calculated to beS o(SnI4; c; 298 K)=69,7 cal Mol?1 K?1 giving ΔG f o (SnI4; c; 298 K)=?50,5 kcal Mol?1 for the corresponding change in theGibbs free energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号