首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
In this paper, we propose fast heuristics for the vehicle routing problem (VRP) with lexicographic max-order objective. A fixed number of vehicles, which are based at a depot, are to serve customers with known demands. The lexicographic max-order objective is introduced by asking to minimize lexicographically the sorted route lengths. Based on a model for this problem, several approaches are studied and new heuristic solution procedures are discussed resulting in the development of a sequential insertion heuristic and a modified savings algorithm in several variants. Comparisons between the algorithms are performed on instances of the VRP library VRPLIB. Finally, based on the results from the computational experiments, conclusions about the applicability and efficiency of the presented algorithms are drawn.  相似文献   

2.
This work deals with a new combinatorial optimization problem, the two-dimensional loading capacitated vehicle routing problem with time windows which is a realistic extension of the well known vehicle routing problem. The studied problem consists in determining vehicle trips to deliver rectangular objects to a set of customers with known time windows, using a homogeneous fleet of vehicles, while ensuring a feasible loading of each vehicle used. Since it includes NP-hard routing and packing sub-problems, six heuristics are firstly designed to quickly compute good solutions for realistic instances. They are obtained by combining algorithms for the vehicle routing problem with time windows with heuristics for packing rectangles. Then, a Memetic algorithm is developed to improve the heuristic solutions. The quality and the efficiency of the proposed heuristics and metaheuristic are evaluated by adding time windows to a set of 144 instances with 15–255 customers and 15–786 items, designed by Iori et al. (Transport Sci 41:253–264, 2007) for the case without time windows.  相似文献   

3.
The heterogeneous fixed fleet vehicle routing problem (HFFVRP) is a variant of the standard vehicle routing problem (VRP), in which the vertices have to be served using a fixed number of vehicles that could be different in size and fixed or variable costs. In this article, we propose an integer linear programming-based heuristic approach in order to solve the HFFVRP that could be used as a complementary tool to improve the performance of the existing methods of solving this problem. Computational results show the effectiveness of the proposed method.  相似文献   

4.
The classical vehicle routing problem (VRP) involves determining a fleet of homogeneous size vehicles and designing an associated set of routes that minimizes the total cost. Our tabu search (TS) algorithm to solve the VRP is based on reactive tabu search (RTS) with a new escape mechanism, which manipulates different neighbourhood schemes in a very sophisticated way in order to get a balanced intensification and diversification continuously during the search process. We compare our algorithm with the best methods in the literature using different data sets and report results including new best known solutions for several well-known benchmark problems.  相似文献   

5.
In this paper, we present a case study on a tanker assignment and routing problem for petrol products in Hong Kong. A fleet of heterogeneous dangerous goods vehicles has been assigned to deliver several types of petroleum products to petrol stations with different tank capacities. Under the vendor-managed inventory system, the delivery company is responsible for controlling the station's inventory and replenishment. The operational characteristics and challenges such as geographic zoning, size of petrol stations, routing restrictions and so on are unique and have been described in this paper. A decision support system (DSS) combining heuristic clustering and optimal routing is employed to find the optimal fleet assignment and routing. Multiple objectives are considered simultaneously such that the number of tankers used could be minimized, the number of drops in trips is minimized, profit in terms of total products delivered is maximized and utilization of resources is maximized. The case illustrates the benefit and advantages of using the proposed DSS.  相似文献   

6.
In this article, a visual interactive approach based on a new greedy randomised adaptive memory programming search (GRAMPS) algorithm is proposed to solve the heterogeneous fixed fleet vehicle routing problem (HFFVRP) and a new extension of the HFFVRP, which is called heterogeneous fixed fleet vehicle routing problem with backhauls (HFFVRPB). This problem involves two different sets of customers. Backhaul customers are pickup points and linehaul customers are delivery points that are to be serviced from a single depot by a heterogeneous fixed fleet of vehicles, each of which is restricted in the capacity it can carry, with different variable travelling costs.  相似文献   

7.
We consider the Multi Trip Vehicle Routing Problem, in which a set of geographically scattered customers have to be served by a fleet of vehicles. Each vehicle can perform several trips during the working day. The objective is to minimize the total travel time while respecting temporal and capacity constraints.  相似文献   

8.
Dial-a-Ride is an emerging transport system, in which a fleet of vehicles, without fixed routes and schedules, carries people from the desired pickup point to the desired delivery point, during a pre-specified time interval. It can be modeled as an -hard routing and scheduling problem, with a suitable mixed integer programming formulation. Exact approaches to this problem are too limited to tackle real-life instances (hundred of trips), therefore heuristics are needed. The heuristic method proposed in this paper builds an auxiliary graph and then solves an assignment problem on this graph. The auxiliary graph is obtained by replacing pairs of nodes with a single one and associating an ad hoc cost function to the new set of arcs. Two different simple methods are employed to transform the infeasible solution given by the assignment problem into a feasible one. The proposed algorithms have been tested on instances created using the Milan network and shown to be fast and effective.   相似文献   

9.
This paper develops several variations of a goal programming model for optimally allocating a fleet of search and rescue aircraft to a fixed set of available and potentially available bases. In addition, the model determines the number of aircraft of each type from each base (at which that type has been stationed) to assign to the various search locations. The criterion for optimality is to maximize the probability of locating each distress in a specified time. These models are then modified to include fleet planning issues. Solution procedures relating to the models are discussed.  相似文献   

10.
The classical objective function of the Vehicle Routing Problem (VRP) is to minimize the total distance traveled by all vehicles (Min–Sum). In several situations, such as disaster relief efforts, computer networks, and workload balance, the minimization of the longest route (Min–Max) is a better objective function. In this paper, we compare the optimal solution of several variants of the Min–Sum and the Min–Max VRP, from the worst-case point of view. Our aim is two-fold. First, we seek to motivate the design of heuristic, metaheuristic, and matheuristic algorithms for the Min–Max VRP, as even the optimal solution of the classical Min–Sum VRP can be very poor if used to solve the Min–Max VRP. Second, we aim to show that the Min–Max approach should be adopted only when it is well-justified, because the corresponding total distance can be very large with respect to the one obtained by optimally solving the classical Min–Sum VRP.  相似文献   

11.
Vehicle Routing Problems (VRP) are concerned with the delivery of a single commodity from a centralized depot to a number of specified customer locations with known demands. In this paper we consider the VRP characterized by: fixed or variable number of vehicles, common vehicle capacity, distance restrictions, and minimization of total distance travelled by all vehicles as the objective. We develop an exact algorithm based on a new subtour elimination constraint. The algorithm is implemented using the CPLEX package for solving the relaxed subproblems. Computational results on 1590 simulated problems and 10 literature problems (without distance restrictions) are reported and a comparative analysis is carried out.  相似文献   

12.
Various vehicle routing problems (VRP) appear in the literature due to their important applications in the area of transportation and distribution.A VRP is characterized by the constraints that the involved factors must satisfy and by an optimality goal.In this paper, we develop a heuristic algorithm that
  • (i)partitions suitably a distribution network into subnetworks. A single depot complies with every subnetwork, where a fleet of identical vehicles will start their itinerary. The nodes of the corresponding subnetwork are demand nodes that require a onetime visit by one only vehicle.
  • (ii)Determine the routes of k vehicles, k=2,3,…, for every subnetwork so to minimize the visiting time of the corresponding demand nodes. Consequently the method computes the necessary vehicle number for each subnetwork so as to complete promptly the visiting requirement of all the demand nodes of the whole network. The main strategy of the algorithm for designing the vehicle routes consists of balancing the time utilization of the used vehicles. The paper is integrated by an application of the presented algorithm to the center of the city of Thessaloniki.
  相似文献   

13.
The Team Orienteering Problem (TOP) is the generalization to the case of multiple tours of the Orienteering Problem, known also as Selective Traveling Salesman Problem. A set of potential customers is available and a profit is collected from the visit to each customer. A fleet of vehicles is available to visit the customers, within a given time limit. The profit of a customer can be collected by one vehicle at most. The objective is to identify the customers which maximize the total collected profit while satisfying the given time limit for each vehicle. We propose two variants of a generalized tabu search algorithm and a variable neighborhood search algorithm for the solution of the TOP and show that each of these algorithms beats the already known heuristics. Computational experiments are made on standard instances.  相似文献   

14.
We describe three simple heuristics for the vehicle routeing problem with customer time windows that can be violated by paying appropriate penalties. The customer demands are known, and a homogeneous fleet of vehicles stationed at a single depot is considered. The penalty payable to a customer is assumed to be a linear function of the amount of time window violation. Upper limits are imposed on both the penalty payable and the waiting time allowed at any customer. At each customer in a route, the PC-based heuristics simultaneously determine the actual time to begin service, and the next customer to serve. To achieve this, each heuristic uses different measures to compare the cost of waiting and penalty payable, with the benefit obtained by leaving immediately for the next customer. Computational results on a set of benchmark problems show that the procedure is efficient and enables significant reduction in the number of vehicles required and/or the total route distances while controlling both customer penalties and waiting times.  相似文献   

15.
This paper presents a multi-period vehicle routing problem for a large-scale production and distribution network. The vehicles must be routed in such a way as to minimize travel and inventory costs over a multi-period horizon, while also taking retailer demands and the availability of products at a central production facility into account. The network is composed of one distribution center and hundreds of retailers. Each retailer has its demand schedule representing the total number of units of a given product that should have been received on a given day. Many high value products are distributed. Product availability is determined by the production facility, whose production schedule determines how many units of each product must be available on a given day. To distribute these products, the routes of a heterogeneous fleet must be determined for a multiple period horizon. The objective of our research is to minimize the cost of distributing products to the retailers and the cost of maintaining inventory at the facility. In addition to considering product availability, the routing schedule must respect many constraints, such as capacity restrictions on the routes and the possibility of multiple vehicle trips over the time horizon. In the situation studied, no more than 20 product units could be carried by a single vehicle, which generally limited the number of retailers that could be supplied to one or two per route. This article proposes a mathematical formulation, as well as some heuristics, for solving this single-retailer-route vehicle routing problem. Extensions are then proposed to deal with the multiple-retailer-route situation.  相似文献   

16.
In the vehicle routing problem (VRP), a fleet of vehicles must service the demands of customers in a least-cost way. In the split delivery vehicle routing problem (SDVRP), multiple vehicles can service the same customer by splitting the deliveries. By allowing split deliveries, savings in travel costs of up to 50 % are possible, and this bound is tight. Recently, a variant of the SDVRP, the split delivery vehicle routing problem with minimum delivery amounts (SDVRP-MDA), has been introduced. In the SDVRP-MDA, split deliveries are allowed only if at least a minimum fraction of a customer’s demand is delivered by each visiting vehicle. We perform a worst-case analysis on the SDVRP-MDA to determine tight bounds on the maximum possible savings.  相似文献   

17.
In this paper, a parallel clustering technique and route construction heuristic have been developed for the vehicle routing problem (VRP) with split deliveries and pickups. An MILP formulation for determining the exact solution to the problem has also been included. It has been shown through extensive experimentation that the algorithm proposed in this paper statistically produces better results than the only heuristic existing for this class of problems in literature. We also form a basis of comparison between this class of problems and the VRP with simultaneous deliveries and pickups. We note that while heuristics for simultaneous deliveries and pickups cannot be applied in situations where customers' delivery or pickup demands exceed the vehicle capacity, heuristics allowing split deliveries and pickups can, in fact, be applied in every situation, even producing superior results under the combined objective of minimization of the fixed charge and mileage associated with vehicle routes. A guideline as to which heuristic could be used under what parametric conditions and objective functions, has also been provided.  相似文献   

18.
The two-dimensional loading heterogeneous fleet vehicle routing problem (2L-HFVRP) is a variant of the classical vehicle routing problem in which customers are served by a heterogeneous fleet of vehicles. These vehicles have different capacities, fixed and variable operating costs, length and width in dimension, and two-dimensional loading constraints. The objective of this problem is to minimize transportation cost of designed routes, according to which vehicles are used, to satisfy the customer demand. In this study, we proposed a simulated annealing with heuristic local search (SA_HLS) to solve the problem and the search was then extended with a collection of packing heuristics to solve the loading constraints in 2L-HFVRP. To speed up the search process, a data structure was used to record the information related to loading feasibility. The effectiveness of SA_HLS was tested on benchmark instances derived from the two-dimensional loading vehicle routing problem (2L-CVRP). In addition, the performance of SA_HLS was also compared with three other 2L-CVRP models and four HFVRP methods found in the literature.  相似文献   

19.
This paper deals with the Heterogeneous Fleet Vehicle Routing Problem (HFVRP). The HFVRP is $\mathcal{NP}$ -hard since it is a generalization of the classical Vehicle Routing Problem (VRP), in which clients are served by a heterogeneous fleet of vehicles with distinct capacities and costs. The objective is to design a set of routes in such a way that the sum of the costs is minimized. The proposed algorithm is based on the Iterated Local Search (ILS) metaheuristic which uses a Variable Neighborhood Descent procedure, with a random neighborhood ordering (RVND), in the local search phase. To the best of our knowledge, this is the first ILS approach for the HFVRP. The developed heuristic was tested on well-known benchmark instances involving 20, 50, 75 and 100 customers. These test-problems also include dependent and/or fixed costs according to the vehicle type. The results obtained are quite competitive when compared to other algorithms found in the literature.  相似文献   

20.
The problem reported in this paper is a variant of the classical vehicle routing problem, where customer requests for a transportation company can be served either by its private fleet of vehicles or assigned to an external common carrier. The latter case occurs if the demand exceeds the total capacity of the private fleet or if it is more economical to do so. Accordingly, the objective is to minimize the variable and fixed costs of the private fleet plus the costs charged by the common carrier. A tabu search heuristic with a neighbourhood structure based on ejection chains is proposed to solve this problem. It is empirically demonstrated that this algorithm outperforms the best approaches reported in the literature on a set of benchmark instances with both homogeneous and heterogeneous fleets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号