首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relaxation dynamics of the excited singlet states of 2,5-bis-(N-methyl-N-1,3-propdienylaniline)-cyclopentanone (MPAC), a ketocyanine dye, have been investigated using steady-state absorption and emission as well as femtosecond time-resolved absorption spectroscopic techniques. Following photoexcitation using 400 nm light, the molecule is excited to the S2 state, which is fluorescent in rigid matrices at 77 K. S2 state is nearly non-fluorescent in solution and has a very short lifetime (0.5 ± 0.2 ps). In polar aprotic solvents, the S1 state follows a complex multi-exponential relaxation dynamics consisting of torsional motion of the donor groups, solvent re-organization as well as photoisomerization processes. However, in alcoholic solvents, solvent re-organization via intermolecular hydrogen-bonding interaction is the only relaxation process observed in the S1 state. In trifluoroethanol, a strong hydrogen bonding solvent, conversion of the non-hydrogen-bonded form, which is formed following photoexcitation, to the hydrogen-bonded complex has been clearly evident in the relaxation process of the S1 state.  相似文献   

2.
Photophysical properties of porphyrin tapes   总被引:1,自引:0,他引:1  
The novel fused Zn(II)porphyrin arrays (Tn, porphyrin tapes) in which the porphyrin macrocycles are triply linked at meso-meso, beta-beta, beta-beta positions have been investigated by steady-state and time-resolved spectroscopic measurements along with theoretical MO calculations. The absorption spectra of the porphyrin tapes show a systematic downshift to the IR region as the number of porphyrin pigments increases in the arrays. The fused porphyrin arrays exhibit a rapid formation of the lowest excited states (for T2, approximately 500 fs) via fast internal conversion processes upon photoexcitation at 400 nm (Soret bands), which is much faster than the internal conversion process of approximately 1.2 ps observed for a monomeric Zn(II)porphyrin. The relaxation dynamics of the lowest excited states of the porphyrin tapes were accelerated from approximately 4.5 ps for the T2 dimer to approximately 0.3 ps for the T6 hexamer as the number of porphyrin units increases, being explained well by the energy gap law. The overall photophysical properties of the porphyrin tapes were observed to be in a sharp contrast to those of the orthogonal porphyrin arrays. The PPP-SCI calculated charge-transfer probability indicates that the lowest excited state of the porphyrin tapes (Tn) resembles a Wannier-type exciton closely, whereas the lowest excited state of the directly linked porphyrin arrays can be considered as a Frenkel-type exciton. Conclusively, these unique photophysical properties of the porphyrin tapes have aroused much interest in the fundamental photophysics of large flat organic molecules as well as in the possible applications as electric wires, IR sensors, and nonlinear optical materials.  相似文献   

3.
We performed a systematic study on the spectroscopic and aggregation properties of stoichiometric mixtures (1:4) of the tetracationic meso‐tetrakis(4‐N‐methylpyridinium)porphyrin (H2TMPyP) and three sodium alkylsulfate surfactants (tetradecyl, hexadecyl, and octadecylsulfate) in an aqueous solution. The objective was to build a supramolecular aggregate, which would favor the internalization of tetracationic porphyrins in cells without chemical modification of the structure of the porphyrin. We show that stoichiometric H2TMPyP/alkylsulfate (1:4) mixtures lead to the formation of large hollow spherical aggregates (60–160 nm). The TEM images show that the membrane of these aggregates are composed of smaller aggregates, which are probably rod‐like micelles. These rod‐like micelles have a hydrophobic core composed of the alkyl chains of the alkylsulfate surfactant, whereas the charged surface corresponds to the tetracationic porphyrins.  相似文献   

4.
Directly 2,12‐ and 2,8‐linked ZnII porphyrin oligomers were prepared from 2,12‐ and 2,8‐diborylated ZnII porphyrin by a cross platinum‐induced coupling with a 2‐borylated ZnII porphyrin end unit followed by a triphenylphosphine (PPh3)‐mediated reductive elimination. Comparative studies on the steady‐state absorption and fluorescence spectra and the fluorescence lifetimes led to a conclusion that the exciton in the S1 state is delocalized over approximately four and two ZnII porphyrin units for 2,12‐ and 2,8‐linked ZnII porphyrin arrays, respectively.  相似文献   

5.
The dynamics of the excited states of 3‐ and 4‐aminofluoren‐9‐ones (3AF and 4AF, respectively) are investigated in different kinds of solvents by using a subpicosecond time‐resolved absorption spectroscopic technique. They undergo hydrogen‐bonding interaction with protic solvents in both the ground and excited states. However, this interaction is more significant in the lowest excited singlet (S1) state because of its substantial intramolecular charge‐transfer character. Significant differences in the spectroscopic characteristics and temporal dynamics of the S1 states of 3AF and 4AF in aprotic and protic solvents reveal that the intermolecular hydrogen‐bonding interaction between the S1 state and protic solvents plays an important role in its relaxation process. Perfect linear correlation between the relaxation times of the S1 state and the longitudinal relaxation times (τL) of alcoholic solvents confirms the prediction regarding the solvation process via hydrogen‐bond reorganization. In the case of weakly interacting systems, the relaxation process can be well described by a dipolar solvation‐like process involving rotation of the OH groups of the alcoholic solvents, whereas in solvents having a strong hydrogen‐bond‐donating ability, for example, methanol and trifluoroethanol, it involves the conversion of the non‐hydrogen‐bonded form to the hydrogen‐bonded complex of the S1 state. Efficient radiationless deactivation of the S1 state of the aminofluorenones by protic solvents is successfully explained by the energy‐gap law, by using the energy of the fully solvated S1 state determined from the time‐resolved spectroscopic data.  相似文献   

6.
Molecular dynamics simulation of the relaxation at 300 K of a fully extended polyethylene chain of800 CH_2 units has been carried out by following the changes in morphology, van der Waals energy, radius ofgyration in the sense of mechanics and gyration radius in the sense of Flory, population of trans-conformation and orientation factor. The relaxation went through three stages: (1) relaxation from themorphology of a straight rod of 100 nm length to the molphology close to a random coil of gyration radius5.9 nm in 110 ps; (2) collapse of the morphology of a coil to a highly compact globule close to a sphere ofgyration radius 1.3 nm after 178 ps as the result of intersegmental van der Waals attractive interactions; (3)lateral ordering of the folded chain segments in the globule without appreciable changes in the chaindimension up to 1600 ps, the time limit of present simulation. Nearly complete relaxation of local segmentalorientation was performed much faster than the relaxation of globule chain orientation even for a single chainof low degree of polymerization and at a temperature some 155℃above its T_g. The lateral ordering of thechain segments during the period 178 to 680 ps of the simulation time was found to obey the Avramiequation with an Avrami index of 1 .44.  相似文献   

7.
Single‐walled carbon nanotube (SWNT)‐based nanohybrid compositions based on (6,5) chirality‐enriched SWNTs ([(6,5) SWNTs]) and a chiral n‐type polymer (S‐PBN(b)‐Ph4PDI) that exploits a perylenediimide (PDI)‐containing repeat unit are reported; S‐PBN(b)‐Ph4PDI‐[(6,5) SWNT] superstructures feature a PDI electron acceptor unit positioned at 3 nm intervals along the nanotube surface, thus controlling rigorously SWNT–electron acceptor stoichiometry and organization. Potentiometric studies and redox‐titration experiments determine driving forces for photoinduced charge separation (CS) and thermal charge recombination (CR) reactions, as well as spectroscopic signatures of SWNT hole polaron and PDI radical anion (PDI?.) states. Time‐resolved pump–probe spectroscopic studies demonstrate that S‐PBN(b)‐Ph4PDI‐[(6,5) SWNT] electronic excitation generates PDI?. via a photoinduced CS reaction (τCS≈0.4 ps, ΦCS≈0.97). These experiments highlight the concomitant rise and decay of transient absorption spectroscopic signatures characteristic of the SWNT hole polaron and PDI?. states. Multiwavelength global analysis of these data provide two charge‐recombination time constants (τCR≈31.8 and 250 ps) that likely reflect CR dynamics involving both an intimately associated SWNT hole polaron and PDI?. charge‐separated state, and a related charge‐separated state involving PDI?. and a hole polaron site produced via hole migration along the SWNT backbone that occurs over this timescale.  相似文献   

8.
Using mixed quantum–classical dynamics, the lowest part of the UV absorption spectrum and the first deactivation steps of keto‐cytosine have been investigated. The spectrum shows several strong peaks, which mainly come from the S1 and S2 states, with minor contributions from the S3. The semiclassical trajectories, launched from these three states, clearly indicate that at least four states are involved in the relaxation of keto‐cytosine to the ground state. Non‐adiabatic transfer between the ππ* and nπ* excited states and deactivation via three‐state conical intersections is observed in the very early stage of the dynamics. In less than 100 fs, a large amount of population is deactivated to the ground state via several mechanisms; some population remains trapped in the S2 state. The latter two events can be connected to the fs and ps transients observed experimentally.  相似文献   

9.
Strong aggregation‐caused quenching of perylene diimides (PDI) is changed successfully by simple chemical modification with two quinoline moieties through C?C at the bay positions to obtain aggregation‐induced enhanced emission (AIEE) of a perylene derivative ( Cya‐PDI ) with a large π‐conjugation system. Cya‐PDI is weakly luminescent in the well‐dispersed CH3CN or THF solutions and exhibits an evident time‐dependent AIEE and absorption spectra broadening in the aggregated state. In addition, morphological inspection demonstrates that the morphology of the aggregated form of Cya‐PDI molecules changed from plate‐shaped to rod‐like aggregates under the co‐effects of time and water. An edge‐to‐face arrangement of aggregation was proposed and discussed. The fact that the Cya‐PDI aggregates show a broad absorption covering the whole visible‐light range and strong intermolecular interaction through π–π stacking in the solid state makes them promising materials for optoelectric applications.  相似文献   

10.
A series of lead‐free double perovskite nanocrystals (NCs) Cs2AgSb1?yBiyX6 (X: Br, Cl; 0≤y≤1) is synthesized. In particular, the Cs2AgSbBr6 NCs is a new double perovskite material that has not been reported for the bulk form. Mixed Ag–Sb/Bi NCs exhibit enhanced stability in colloidal solution compared to Ag–Bi or Ag–Sb NCs. Femtosecond transient absorption studies indicate the presence of two prominent fast trapping processes in the charge‐carrier relaxation. The two fast trapping processes are dominated by intrinsic self‐trapping (ca. 1–2 ps) arising from giant exciton–phonon coupling and surface‐defect trapping (ca. 50–100 ps). Slow hot‐carrier relaxation is observed at high pump fluence, and the possible mechanisms for the slow hot‐carrier relaxation are also discussed.  相似文献   

11.
A series of lead‐free double perovskite nanocrystals (NCs) Cs2AgSb1?yBiyX6 (X: Br, Cl; 0≤y≤1) is synthesized. In particular, the Cs2AgSbBr6 NCs is a new double perovskite material that has not been reported for the bulk form. Mixed Ag–Sb/Bi NCs exhibit enhanced stability in colloidal solution compared to Ag–Bi or Ag–Sb NCs. Femtosecond transient absorption studies indicate the presence of two prominent fast trapping processes in the charge‐carrier relaxation. The two fast trapping processes are dominated by intrinsic self‐trapping (ca. 1–2 ps) arising from giant exciton–phonon coupling and surface‐defect trapping (ca. 50–100 ps). Slow hot‐carrier relaxation is observed at high pump fluence, and the possible mechanisms for the slow hot‐carrier relaxation are also discussed.  相似文献   

12.
The time-resolved absorption spectrum of the lowest excitcd singlet state (S1) over the range 3 — 10 ps after 0.5 ps pulse excitation of the charge-transfer complex of 1,2,4,5-tetracyanobenzene and toluene shows an evolution with a 5 ± 3 ps time constant due to changes in configurations of the complex in S1 associated with the reorientational relaxation of the solvent.  相似文献   

13.
An upper limit to the relaxation time of the first excited electronic singlet state (S1) of azulene in cyclohexane has been determined for two excitation frequencies. The lifetimes of S1 excited by single picosecond duration optical pulses of frequency 18910 cm?1 and 16000 cm?1 are ? 1 ps and ? 2 ps respectively.  相似文献   

14.
Excited‐state relaxation of linear merocyanine dyes in solution is investigated using time‐resolved spectroscopy techniques and quantum chemical calculations. The merocyanine L‐Mero4 and phenyl‐substituted P‐L‐Mero4 have a Strans and Scis structure, respectively, consisting of indole moiety as the donor, indandione as the acceptor, and the tetramethine as the bridge. The time‐correlated single‐photon counting (TCSPC) picosecond measurements after excitation at wavelength 515 nm to the ππ* state yield emission curves with a short component τ1 in the range of 27–160 ps and a second component τ2 of 200–780 ps for L‐Mero4. In P‐L‐Mero4, τ1 lies in the range of 18–150 ps and τ2 220–520 ps. The subfemtosecond transient absorption measurements yield a short component around 0.4–1.4 ps, and the second/third components are similar to those in the TCPSC measurements. The analysis of the experimental data demonstrates that the ground state recovery exhibits a biexponential rise and rapidly indicates that the conversion back to the electronic ground state provides a fast, nonradiative pathway. Quantum chemical calculations on the electronic structures and their dependence on the molecular confirmation are performed. We identify the excited states and the relaxation path along the twist of the center double bonds in tetramethine that might be the nonradiative pathway. The C=C double bond is weakened in the ππ* state. The phenyl substitution in the conjugated double bond weakens this C=C bond, lowers the isomerization barrier, increases the nonradiative rate, and reduces the emission quantum yield. In polar solvents, the energy of the perpendicular conformer along the transcis isomerization path is increased to achieve less coupling to the ground state surface. Because of the small barrier to the trans form, these two conformers establish an equilibrium condition. The trans form, which lies at a lower energy, gains more population and thus has a higher emission yield.  相似文献   

15.
Two dendrimers consisting of a cofacial free‐base bisporphyrin held by a biphenylene spacer and functionalized with 4‐benzeneoxomethane (5‐(4‐benzene)tri‐10,15,20‐(4‐n‐octylbenzene)zinc(II)porphyrin) using either five or six of the six available meso‐positions, have been synthesized and characterized as models for the antenna effect in Photosystems I and II. The presence of the short linkers, ‐CH2O‐, and long C8H17 soluble side chains substantially reduces the number of conformers (foldamers) compared with classic dendrimers built with longer flexible chains. This simplification assists in their spectroscopic and photophysical analysis, notably with respect to fluorescence resonance energy transfer (FRET). Both steady‐state and time‐resolved spectroscopic measurements indicate that the cofacial free bases and the flanking zinc(II)–porphyrin antennas act as energy acceptor and donor, respectively, following excitation in either the Q or Soret bands of the dendrimers. The rate constants for singlet electronic energy transfer (kEET) extracted from the S1 and S2 fluorescence lifetimes of the donor in the presence and absence of the acceptor are ≤ (0.1–0.3)×109 and ~2×109 s?1 for S1→S1 (range from a bi‐exponential decay model) and about 1.5×1012 s?1 for S2→Sn (n>1). Comparisons of these experimental data with those calculated from Förster theory using orientation factors and donor–acceptor distances extracted from computer modeling suggest that a highly restricted number of the many foldamers facilitate energy transfer. These foldamers have the lowest energy by molecular modeling and consist of one or at most two of the flanking zinc porphyrin antennas folded so they lie near the central artificial special pair core with the remaining antennas located almost parallel to and far from it.  相似文献   

16.
Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene ( TcCN ) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)?E(S1)=?0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet‐state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state.  相似文献   

17.
Chemically converted graphene (CCG) covalently linked with porphyrins has been prepared by a Suzuki coupling reaction between iodophenyl‐functionalized CCG and porphyrin boronic ester. The covalently linked CCG–porphyrin composite was designed to possess a short, rigid phenylene spacer between the porphyrin and the CCG. The composite material formed stable dispersions in DMF and the structure was characterized by spectroscopic, thermal, and microscopic measurements. In steady‐state photoluminescence spectra, the emission from the porphyrin linked to the CCG was quenched strongly relative to that of the porphyrin reference. Fluorescence lifetime and femtosecond transient absorption measurements of the porphyrin‐linked CCG revealed a short‐lived porphyrin singlet excited state (38 ps) without yielding the porphyrin radical cation, thereby substantiating the occurrence of energy transfer from the porphyrin excited state to the CCG and subsequent rapid decay of the CCG excited state to the ground state. Consistently, the photocurrent action spectrum of a photoelectrochemical device with a SnO2 electrode coated with the porphyrin‐linked CCG exhibited no photocurrent response from the porphyrin absorption. The results obtained here provide deep insight into the interaction between graphenes and π‐conjugated systems in the excited and ground states.  相似文献   

18.
S. Punidha 《Tetrahedron》2008,64(34):8016-8028
Covalently linked diarylethyne bridged unsymmetrical porphyrin triad containing ZnN4, N4, and N2S2 porphyrin sub-units and porphyrin tetrad containing ZnN4, N4, N3S, and N2S2 porphyrin sub-units were synthesized over sequence of Pd(0) mediated coupling reactions. The triad and tetrad are freely soluble in all common organic solvents and characterized by ES-MS, NMR, absorption, fluorescence, and electrochemical techniques. The 1H NMR, absorption, and electrochemical studies indicated a weak interaction between the porphyrin sub-units of porphyrin triad and porphyrin tetrad. The steady state and time-resolved fluorescence studies supported an energy transfer from one end of porphyrin array to the other end. This kind of porphyrin arrays containing different porphyrin sub-units will be useful for molecular electronics applications.  相似文献   

19.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

20.
A general single‐step strategy has been developed for the direct thermal decomposition of noble‐metal salts in octadecylamine to synthesize octahedron‐ and rod‐shaped noble‐metal aggregates and monodisperse noble‐metal or bimetallic alloy nanocrystals without introducing any additive into the system. It has presented a facile and economic way to fabricate these nanocrystals, especially alloy nanocrystals, which does not require a post‐synthesis solid‐state annealing process. The morphology of the nanocrystals can be easily controlled by tuning the synthetic temperature. Their ability to catalyze heterogeneous Suzuki coupling reactions has been investigated and showed satisfactory catalytic activity. The catalytic performance of the monometallic and bimetallic alloy nanocrystals were also evaluated in the selective hydrogenation of citral in a conventional organic solvent (toluene) and a green solvent (supercritical carbon dioxide, scCO2). Interestingly, the catalysts performed differently to each other when they were in scCO2 owing to the different morphology, which should be readily optimized for further use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号