首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural and thermodynamic behavior of the complex formation of eIF4E with either or both mRNA cap analogue (m7GTP, m7GpppA, or m7GpppG) and 4EBP1 has been investigated by spectroscopic measurements. Although the circular dichroism (CD) spectrum of eIF4E was little affected by the association with any cap analogue, the association constant of eIF4E with m7GpppA/G, estimated from the fluorescence quenching, was about 10 times larger than that with m7GTP. The van't Hoff analyses showed that the m7GpppA/G binding is enthalpy-driven with a large negative deltaH(o), and this is in contrast with the entropy-driven binding of m7GTP, where the positive deltaS(o) is large enough to overcome an increase of deltaH(o). This different behavior obviously originates in the interaction of the second nucleotide in m7GpppA with eIF4E, suggesting the importance of the nucleotide sequence linked to the m7Gppp terminal moiety, in addition to the specific interaction with the m7G base, for the recognition of mRNA cap structure by eIF4E. On the other hand, the CD spectra indicated that the binding of 4EBP1, an endogenous eIF4E-regulatory protein without having any defined secondary structure, shifted the m7GTP- or m7GpppA/G-bound eIF4E to an irregular structure, although such a structural change was not observed for eIF4E alone. The association constant of 4EBP1 with m7GTP- or m7GpppA/G-bound eIF4E was by two orders of magnitude larger than that with eIF4E alone. These results suggest the close interrelation in the supramolecular formation of 4EBP-eIF4E-mRNA cap structure.  相似文献   

2.
Methyltransferases have proven useful to install functional groups site‐specifically in different classes of biomolecules when analogues of their cosubstrate S‐adenosyl‐l ‐methionine (AdoMet) are available. Methyltransferases have been used to address different classes of RNA molecules selectively and site‐specifically, which is indispensable for biophysical and mechanistic studies as well as labeling in the complex cellular environment. However, the AdoMet analogues are not cell‐permeable, thus preventing implementation of this strategy in cells. We present a two‐step enzymatic cascade for site‐specific mRNA modification starting from stable methionine analogues. Our approach combines the enzymatic synthesis of AdoMet with modification of the 5′ cap by a specific RNA methyltransferase in one pot. We demonstrate that a substrate panel including alkene, alkyne, and azido functionalities can be used and further derivatized in different types of click reactions.  相似文献   

3.
4.
Posttranslational modification of proteins with farnesyl and geranylgeranyl isoprenoids is a widespread phenomenon in eukaryotic organisms. Isoprenylation is conferred by three protein prenyltransferases: farnesyl transferase (FTase), geranylgeranyl transferase type-I (GGTase-I), and Rab geranylgeranyltransferase (RabGGTase). Inhibitors of these enzymes have emerged as promising therapeutic compounds for treatment of cancer, viral and parasite originated diseases, as well as osteoporosis. However, no generic nonradioactive protein prenyltransferase assay has been reported to date, complicating identification of enzyme-specific inhibitors. We have addressed this issue by developing two fluorescent analogues of farnesyl and geranylgeranyl pyrophosphates {3,7-dimethyl-8-(7-nitro-benzo[1,2,5]oxadiazol-4-ylamino)-octa-2,6-diene-1}pyrophosphate (NBD-GPP) and {3,7,11-trimethyl-12-(7-nitro-benzo[1,2,5]oxadiazo-4-ylamino)-dodeca-2,6,10-trien-1} pyrophosphate (NBD-FPP), respectively. We demonstrate that these compounds can serve as efficient lipid donors for prenyltransferases. Using these fluorescent lipids, we have developed two simple (SDS-PAGE and bead-based) in vitro prenylation assays applicable to all prenyltransferases. Using the SDS-PAGE assay, we found that, in contrast to previous reports, the tyrosine phosphatase PRL-3 may possibly be a dual substrate for both FTase and GGTase-I. The on-bead prenylation assay was used to identify prenyltransferase inhibitors that displayed nanomolar affinity for RabGGTase and FTase. Detailed analysis of the two inhibitors revealed a complex inhibition mechanism in which their association with the peptide binding site of the enzyme reduces the enzyme's affinity for lipid and peptide substrates without competing directly with their binding. Finally, we demonstrate that the developed fluorescent isoprenoids can directly and efficiently penetrate into mammalian cells and be incorporated in vivo into small GTPases.  相似文献   

5.
6.
mRNAs of primitive eukaryotes such as Caenorhabditis elegans and Ascaris summ possess two different caps at their 5' terminus. They have either a typical cap which consists of 7-methylguanosine linked via a 5',5'-triphosphate bridge to the first transcribed nucleotide (MMG cap) or an atypical hypermethylated form with two additional methyl groups at the N2 position (TMG cap). Studies on interaction between the 5' end of mRNA and proteins that specifically recognize its structure have been carried out for several years and they often require chemically modified cap analogues. Here, we present the synthesis of five novel dinucleotide MMG and TMG cap analogues designed for binding studies using biophysical methods such as electron spin resonance (ESR) and surface plasmon resonance (SPR). New analogues were prepared by derivatization of the 2',3'-cis diol of the second nucleotide in the cap structure with levulinic acid, and coupling of the obtained acetal through its carboxylic group with 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino TEMPO), ethylenediamine (EDA) or (+)-biotinyl-3,6,9-trioxaundecanediamine (amine-PEO(3)-biotin).  相似文献   

7.
Labeled RNAs are invaluable probes for investigation of RNA function and localization. However, mRNA labeling remains challenging. Here, we developed an improved method for 3′-end labeling of in vitro transcribed RNAs. We synthesized novel adenosine 3′,5′-bisphosphate analogues modified at the N6 or C2 position of adenosine with an azide-containing linker, fluorescent label, or biotin and assessed these constructs as substrates for RNA labeling directly by T4 ligase or via postenzymatic strain-promoted alkyne-azide cycloaddition (SPAAC). All analogues were substrates for T4 RNA ligase. Analogues containing bulky fluorescent labels or biotin showed better overall labeling yields than postenzymatic SPAAC. We successfully labeled uncapped RNAs, NAD-capped RNAs, and 5′-fluorescently labeled m7Gp3Am-capped mRNAs. The obtained highly homogenous dually labeled mRNA was translationally active and enabled fluorescence-based monitoring of decapping. This method will facilitate the use of various functionalized mRNA-based probes.  相似文献   

8.
The 7‐methylguanosine (m7G) cap structure is a unique feature present at the 5′ ends of messenger RNAs (mRNAs), and it can be subjected to extensive modifications, resulting in alterations to mRNA properties (e.g. translatability, susceptibility to degradation). It also can provide molecular tools to study mRNA metabolism. We developed new mRNA 5′ cap analogues that enable the site‐specific labeling of RNA at the 5′ end using strain‐promoted azide–alkyne cycloaddition (SPAAC) without disrupting the basic function of mRNA in protein biosynthesis. Some of these azide‐functionalized compounds are equipped with additional modifications to augment mRNA properties. The application of these tools was demonstrated by labeling translationally active mRNAs in living cells.  相似文献   

9.
[structure: see text] Chitin synthase (CS) polymerizes UDP-GlcNAc to form chitin (poly-beta(1,4)-GlcNAc), a key component of fungal cell wall biosynthesis. Little is known about the substrate specificity of chitin synthase or the scope of substrate modification the enzyme will tolerate. Following a previous report suggesting that 6-O-dansyl GlcNAc is biosynthetically incorporated into chitin, we became interested in developing an assay for CS activity based on incorporation of a fluorescent substrate. We describe the synthesis of two fluorescent UDP-GlcNAc analogues and their evaluation as chitin synthase substrates.  相似文献   

10.
The m7G cap is a unique nucleotide structure at the 5′-end of all eukaryotic mRNAs. The cap specifically interacts with numerous cellular proteins and participates in biological processes that are essential for cell growth and function. To provide small molecular probes to study important cap-recognizing proteins, we synthesized m7G nucleotides labeled with fluorescent tags via the terminal phosph(on)ate group and studied how their emission properties changed upon protein binding or enzymatic cleavage. Only the pyrene-labeled compounds behaved as sensitive turn-on probes. A pyrene-labeled m7GTP analogue showed up to eightfold enhanced fluorescence emission upon binding to eukaryotic translation initiation factor 4E (eIF4E) and over 30-fold enhancement upon cleavage by decapping scavenger (DcpS) enzyme. These observations served as the basis for developing binding- and hydrolytic-activity assays. The assay utility was validated with previously characterized libraries of eIF4E ligands and DcpS inhibitors. The DcpS assay was also applied to study hydrolytic activity and inhibition of endogenous enzyme in cytoplasmic extracts from HeLa and HEK cells.  相似文献   

11.
The coupling of an enzymatic transformation with dynamic host-guest exchange allows the unselective binding of macrocycles to be used for highly selective analyte sensing. The resulting supramolecular tandem enzyme assays require the enzymatic substrate and its corresponding product to differ significantly in their affinity for macrocycles, for example, cation receptors, and to show a differential propensity to displace a fluorescent dye from its host-guest complex. The enzymatic transformation results in a concomitant dye displacement that can be accurately followed by optical spectroscopy, specifically fluorescence. By exploiting this label-free continuous enzyme assay principle with the fluorescent dye Dapoxyl and the macrocyclic host cucurbit[7]uril, a multiparameter sensor array has been designed, which is capable of detecting the presence of amino acids (e.g. histidine, arginine, lysine, and tyrosine) and their decarboxylases. Only in the presence of both, the particular amino acid and the corresponding decarboxylase, is the amine or diamine product formed. These products are more highly positively charged than the substrate, have a higher affinity for the macrocycle and, therefore, displace the dye from the complex. The extension of the high selectivity and muM sensitivity of the tandem assay principle has also allowed for the accurate measurement of D-lysine enantiomeric excesses of up to 99.98 %, as only the L-enantiomer is accepted by the enzyme as a substrate and is converted to the product that is responsible for the observed fluorescence signal.  相似文献   

12.
The rate of hydrolysis of natural phospholipids by the phosphatidylcholine-preferring phospholipase C from Bacillus cereus (PLC(Bc)) follows the order phosphatidylcholine > phosphatidylethanolamine > phosphatidyl-l-serine. To probe the structural basis for this substrate specificity, a series of water-soluble, nonhydrolyzable substrate analogues were needed so their complexes with the enzyme could be studied via X-ray crystallography and isothermal titration calorimetry (ITC). Accordingly the water-soluble dithiophospholipids 2-10 having choline, ethanolamine, and l-serine headgroups were synthesized, and the inhibitory activity of each was determined in an assay using 1,2-dihexanoyl-sn-glycero-3-phosphocholine (C6PC) as the monomeric substrate. The 1,2-dibutanoyl dithiophosphocholine 2 was a weak inhibitor, whereas the related 1,2-dipentanoyl dithiophosphocholine 3 and the ethylene glycol dithiophosphocholines 4 and 5 were moderate inhibitors. The 1,2-omega-hydroxydiacyl dithiophosphocholines 6 and 7 were potent inhibitors, while the related compound 8, which had shorter acyl side chains, was a weak inhibitor. The dithiophosphoethanolamine 9 was a modest inhibitor, whereas the dithiophospho-l-serine 10 was a somewhat weaker inhibitor. Overall, the phospholipid analogues had increasing K(i) values according to the order 2 < 10 < 3 < 4 approximately 5 approximately 8 < 9 < 6 < 7 and increasing solubility according to the sequence 5 approximately 7 < 4 approximately 6 approximately 9 < 3 < 10 < 8 < 2.  相似文献   

13.
14.
Base-modified fluorescent ribonucleoside-analogue probes are valuable tools in monitoring RNA structure and function because they closely resemble the structure of natural nucleobases. Especially, 2-aminopurine, a highly environment-sensitive adenosine analogue, is the most extensively utilized fluorescent nucleoside analogue. However, only a few isosteric pyrimidine ribonucleoside analogues that are suitable for probing the structure and recognition properties of RNA molecules are available. Herein, we describe the synthesis and photophysical characterization of a small series of base-modified pyrimidine ribonucleoside analogues derived from tagging indole, N-methylindole, and benzofuran onto the 5-position of uracil. One of the analogues, based on a 5-(benzofuran-2-yl)pyrimidine core, shows emission in the visible region with a reasonable quantum yield and, importantly, displays excellent solvatochromism. The corresponding triphosphate substrate is effectively incorporated into oligoribonucleotides by T7 RNA polymerase to produce fluorescent oligoribonucleotide constructs. Steady-state and time-resolved spectroscopic studies with fluorescent oligoribonucleotide constructs demonstrate that the fluorescent ribonucleoside photophysically responds to subtle changes in its environment brought about by the interaction of the chromophore with neighboring bases. In particular, the emissive ribonucleoside, if incorporated into an oligoribonucleotide, positively reports the presence of a DNA abasic site with an appreciable enhancement in fluorescence intensity. The straightforward synthesis, amicability to enzymatic incorporation, and sensitivity to changes in the microenvironment highlight the potential of the benzofuran-conjugated pyrimidine ribonucleoside as an efficient fluorescent probe to investigate nucleic acid structure, dynamics, and recognition events.  相似文献   

15.
We screened a series of RNA and DNA aptamers for their ability to serve in the dye displacement assays in which analytes compete with TO dye. We conclude that, while the performance of the TO dye displacement approach is not always predictable, it is still a simple and sensitive assay to detect binding between RNA aptamers and small molecules. In particular, we describe efficient assays for tobramycin and theophylline, with up to 90% displacement of TO observed, and we describe the first aptameric assay for cAMP. Figure An RNA or DNA aptamer against a molecule (circle) binds TO dye, resulting in a fluorescent complex. Presence of free molecule in solution results in the displacement of TO from the complex and a reduction in fluorescence Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
A high-performance liquid chromatographic method is described for the assay of angiotensin-converting enzyme in human serum and for the separation of angiotensins and their analogues after pre-column fluorescence derivatization with benzoin. Angiotensin II, formed enzymatically from angiotensin I, is converted into a fluorescent derivative which is then separated isocratically from the substrate and biological substances in the enzyme reaction mixture on a reversed-phase column (TSK gel ODS-120T). The lower limit of detection for angiotensin II is 0.66 pmol per enzyme assay tube. The method is simple and sensitive, and requires as little as 5 microliter of human serum. Angiotensin analogues can also be separated and quantified by the chromatographic technique, and thus this method permits the use of the analogues of angiotensin I as substrates.  相似文献   

17.
A new fluorescent ribonucleoside alphabet (mthN) consisting of pyrimidine and purine analogues, all derived from methylthieno[3,4-d]pyrimidine as the heterocyclic core, is described. Large bathochromic shifts and high microenvironmental susceptibility of their emission relative to previous alphabets derived from thieno[3,4-d]pyrimidine (thN) and isothiazole[4,3-d]pyrimidine (tzN) scaffolds are observed. Subjecting the purine analogues to adenosine deaminase, guanine deaminase and T7 RNA polymerase indicate that, while varying, all but one enzyme tolerate the corresponding mthN/mthNTP substrates. The robust emission quantum yields, high photophysical responsiveness and enzymatic accommodation suggest that the mthN alphabet is a biophysically viable tool and can be used to probe the tolerance of nucleoside/tide-processing enzymes to structural perturbations of their substrates.  相似文献   

18.
Spanish flu, polio epidemics, and the ongoing COVID-19 pandemic are the most profound examples of severe widespread diseases caused by RNA viruses. The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands affordable and reliable assays for testing antivirals. To test inhibitors of viral proteases, we have developed an inexpensive high-throughput assay based on fluorescent energy transfer (FRET). We assayed an array of inhibitors for papain-like protease from SARS-CoV-2 and validated it on protease from the tick-borne encephalitis virus to emphasize its versatility. The reaction progress is monitored as loss of FRET signal of the substrate. This robust and reproducible assay can be used for testing the inhibitors in 96- or 384-well plates.  相似文献   

19.
A label-free optical detection method has been designed that allows direct monitoring of enzymatic peptide digestion in vitro. The method is based on the addition of a reporter pair, composed of the macrocyclic host cucurbit[7]uril (CB7) and the fluorescent dye acridine orange (AO), to detect the proteolytic degradation of peptides. The enzymatic activity of trypsin and leucine aminopeptidase (LAP) was investigated using H-LSRFSWGA-OH as a substrate. The substrate as well as the intermediary and final products (i.e., H-FSWGA-OH and phenylalanine) formed during its enzymatic hydrolysis differ in their binding affinity to the receptor CB7, which results in varying degrees of dye displacement and, therefore, different fluorescence intensities. CB7 showed a relatively weak binding constant of K approximately 10(4) M(-1) with the substrate, a relatively strong binding constant of K > or = 10(6) M(-1) with H-FSWGA-OH (which is a final product formed by trypsin digestion and the intermediary product formed during the enzymatic activity of LAP), and a moderate binding constant of K < or = 10(5) M(-1) with phenylalanine. Owing to this differential binding affinity of CB7 with the substrate and the corresponding products, the digestion of a peptide by trypsin was followed as a decrease in fluorescence signal, while the complete degradation of the peptide by LAP was monitored as a decrease and a subsequent increase in fluorescence signal. The k(cat)/K(M) value for trypsin (2.0 x 10(7) min(-1) M(-1)) was derived from the change in fluorescence signal with time. Additionally, the complete degradation of the peptide by LAP was also followed by mass spectrometry. The use of a supramolecular sensing ensemble (macrocyclic host and dye) as a fluorescent reporter pair gives this method the flexibility to adapt for monitoring the stepwise degradation of different biologically relevant peptides by other proteases.  相似文献   

20.
The development of RNA imaging strategies in live cells is essential to improve our understanding of their role in various cellular functions. We report an efficient RNA imaging method based on the CRISPR-dPspCas13b system with fluorescent RNA aptamers in sgRNA (CasFAS) in live cells. Using modified sgRNA attached to fluorescent RNA aptamers that showed reduced background fluorescence, this approach provides a simple, sensitive way to image and track endogenous RNA with high accuracy and efficiency. In addition, color switching can be easily achieved by changing the fluorogenic dye analogues in living cells through user-friendly washing and restaining operations. CasFAS is compatible with orthogonal fluorescent aptamers, such as Broccoli and Pepper, enabling multiple colors RNA labeling or intracellular RNA–RNA interaction imaging. Finally, the visualization of severe fever with thrombocytopenia syndrome virus (SFTSV) was achieved by CasFAS, which may facilitate further studies on this virus.

The development of RNA imaging strategies in live cells is essential to improve our understanding of their role in various cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号