首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dinuclear manganese hydride complexes of the form [Mn2(CO)8(μ-H)(μ-PR2)] (R=Ph, 1 ; R=iPr, 2 ) were used in E-selective alkyne semi-hydrogenation (E-SASH) catalysis. Catalyst speciation studies revealed rich coordination chemistry and the complexes thus formed were isolated and in turn tested as catalysts; the results underscore the importance of dinuclearity in engendering the observed E-selectivity and provide insights into the nature of the active catalyst. The insertion product obtained from treating 2 with (cyclopropylethynyl)benzene contains a cis-alkenyl bridging ligand with the cyclopropyl ring being intact. Treatment of this complex with H2 affords exclusively trans-(2-cyclopropylvinyl)benzene. These results, in addition to other control experiments, indicate a non-radical mechanism for E-SASH, which is highly unusual for Mn−H catalysts. The catalytically active species are virtually inactive towards cis to trans alkene isomerization indicating that the E-selective process is intrinsic and dinuclear complexes play a critical role. A reaction mechanism is proposed accounting for the observed reactivity which is fully consistent with a kinetic analysis of the rate limiting step and is further supported by DFT computations.  相似文献   

2.
The metal-free cis selective hydrogenation of alkynes catalyzed by a boroxypyridine is reported. A variety of internal alkynes are hydrogenated at 80 °C under 5 bar H2 with good yields and stereoselectivity. Furthermore, the catalyst described herein enables the first metal-free semihydrogenation of terminal alkynes. Mechanistic investigations, substantiated by DFT computations, reveal that the mode of action by which the boroxypyridine activates H2 is reminiscent of the reactivity of an intramolecular frustrated Lewis pair. However, it is the change in the coordination mode of the boroxypyridine upon H2 activation that allows the dissociation of the formed pyridone borane complex and subsequent hydroboration of an alkyne. This change in the coordination mode upon bond activation is described by the term boron-ligand cooperation.  相似文献   

3.
The current work describes the synthesis and full characterization of zerovalent nickel complexes of the type [(dippe)Ni(η2C,C‐Fn‐alkyne)] (dippe=1,2‐bis(di‐isopropylphosphino‐ethane), Fn‐alkyne=fluorinated aromatic alkyne, n=1, 3, 5; 3a , 3b , 3c ) and [{(dippe)Ni}22C,C‐Fn‐alkyne)] ( 4 ). Reactions with complexes 3a , 3b , 3c , and water as the hydrogen source, yield selective semihydrogenation of the bound alkyne to the corresponding alkene, accompanied by partial hydrodefluorination of the aromatic ring. Different alkynes were tested; on using the alkyne with five fluorine atoms over the aromatic ring, partial defluorination was achieved under the mildest reaction conditions, followed in reactivity by the alkyne with three fluorine atoms. The alkyne with only one fluorine atom was barely defluorinated. The use of triethylsilane as a sacrificial hydride source resulted in an overall increase in reactivity towards defluorination.  相似文献   

4.
Alkenes possessing four different carbon‐linked substituents are the main structural motif of many biologically active compounds. The derivatives of (2E)‐3‐(3‐methoxyphenyl)‐2‐methylpent‐2‐enoic acid ((E)‐ 2c ) are suitable precursors for the synthesis of Tapentadol, a novel centrally acting analgesic. It was found that the Ni‐carbometallation reaction of disubstituted alkyne 8 with CO2 and an Et2Zn allows for efficient and practical preparation of (E)‐ 2c as a single (E)‐regioisomer in 89% of isolated yield. The influence of the size of the aliphatic substituent of alkyne and the steric hindrance of the organozinc reagent on stereochemical course of the carbometallation reaction was evaluated. Finally, air‐stable Ni(dme)Cl2 was proposed as an alternative to widely used Ni(cod)2 catalyst.  相似文献   

5.
A systematic study on the selective semihydrogenation of alkynes to alkenes on shape‐controlled palladium (Pd) nanocrystals was performed. Pd nanocrystals with a cubic shape and thus exposed {100} facets were synthesized in an aqueous solution through the reduction of Na2PdCl4 with L ‐ascorbic acid in the presence of bromide ions. The Pd nanocubes were tested as catalysts for the semihydrogenation of various alkynes such as 5‐decyne, 2‐butyne‐1,4‐diol, and phenylacetylene. For all substrates, the Pd nanocubes exhibited higher alkene selectivity (>90 %) than a commercial Pd/C catalyst (75–90 %), which was attributed to a large adsorption energy of the carbon–carbon triple bond on the {100} facets of the Pd nanocubes. Our approach based on the shape control of Pd nanocrystals offers a simple and effective route to the development of a highly selective catalyst for alkyne semihydrogenation.  相似文献   

6.
A simple and straightforward semihydrogenation of alkyne to alkene with triethanolamine and formic acid in the presence of PdCl2 has been described. Although hydrogenation using formic acid as a hydrogenation source has been used in combination with amines previously, few reports are available concerning the associated reactivity. We demonstrated that reactivity changes depending on the type of amine used in the hydrogenation. Further, this reaction requires no strict time control, making it a useful tool in organic synthesis.  相似文献   

7.
Although many monometallic active sites have been installed in metal–organic frameworks (MOFs) for catalytic reactions, there are no effective strategies to generate bimetallic catalysts in MOFs. Here we report the synthesis of a robust, efficient, and reusable MOF catalyst, MOF-NiH, by adaptively generating and stabilizing dinickel active sites using the bipyridine groups in MOF-253 with the formula of Al(OH)(2,2′-bipyridine-5,5′-dicarboxylate) for Z-selective semihydrogenation of alkynes and selective hydrogenation of C=C bonds in α,β-unsaturated aldehydes and ketones. Spectroscopic studies established the dinickel complex (bpy⋅)NiII(μ2-H)2NiII(bpy⋅) as the active catalyst. MOF-NiH efficiently catalyzed selective hydrogenation reactions with turnover numbers of up to 192 and could be used in five cycles of hydrogenation reactions without catalyst leaching or significant decrease of catalytic activities. The present work uncovers a synthetic strategy toward solution-inaccessible Earth-abundant bimetallic MOF catalysts for sustainable catalysis.  相似文献   

8.
A-type cyclopentenone isoprostanoids are abundantly formed in vivo by radical peroxidation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are consumed daily for the prevention of cardiovascular and neurological pathologies. To facilitate in depth studies concerning the effects of these oxidized isoprostanoids on human health, labeled derivatives are necessary. In this paper, we have accomplished the first total synthesis of labeled A-type cyclopentenone isoprostanoids, namely 17,18-[D2]-15-A3t-IsoP and 19,20-[D2]-17-A4t-NeuroP. The two enantioselective routes are highly convergent, stemming from a common intermediate, readily available by a Julia–Kocienski reaction, and feature the semihydrogenation of an alkyne moiety for the installation of the labeled lower side chain.  相似文献   

9.
Terminal alkyne coupling reactions promoted by rhodium(I) complexes of macrocyclic NHC-based pincer ligands—which feature dodecamethylene, tetradecamethylene or hexadecamethylene wingtip linkers viz. [Rh(CNC-n)(C2H4)][BArF4] (n=12, 14, 16; ArF=3,5-(CF3)2C6H3)—have been investigated, using the bulky alkynes HC≡CtBu and HC≡CAr’ (Ar’=3,5-tBu2C6H3) as substrates. These stoichiometric reactions proceed with formation of rhodium(III) alkynyl alkenyl derivatives and produce rhodium(I) complexes of conjugated 1,3-enynes by C−C bond reductive elimination through the annulus of the ancillary ligand. The intermediates are formed with orthogonal regioselectivity, with E-alkenyl complexes derived from HC≡CtBu and gem-alkenyl complexes derived from HC≡CAr’, and the reductive elimination step is appreciably affected by the ring size of the macrocycle. For the homocoupling of HC≡CtBu, E-tBuC≡CCH=CHtBu is produced via direct reductive elimination from the corresponding rhodium(III) alkynyl E-alkenyl derivatives with increasing efficacy as the ring is expanded. In contrast, direct reductive elimination of Ar'C≡CC(=CH2)Ar’ is encumbered relative to head-to-head coupling of HC≡CAr’ and it is only with the largest macrocyclic ligand studied that the two processes are competitive. These results showcase how macrocyclic ligands can be used to interrogate the mechanism and tune the outcome of terminal alkyne coupling reactions, and are discussed with reference to catalytic reactions mediated by the acyclic homologue [Rh(CNC-Me)(C2H4)][BArF4] and solvent effects.  相似文献   

10.
Herein we report the first total synthesis of RvD2n-3 DPA, an endogenously formed mediator biosynthesized from the omega-3 fatty acid n-3 docosapentaenoic acid. The key steps are the Midland Alpine borane reduction, Sonogashira cross-coupling reactions, and a Z-selective alkyne reduction protocol, yielding RvD2n-3 DPA methyl ester in 13 % yield over 12 steps (longest linear sequence). The physical property data (UV chromophore, chromatography and MS/MS fragmentation) of the synthetic lipid mediator matched those obtained from biologically produced material. Moreover, synthetic RvD2n-3 DPA also carried the potent biological activities of enhancing macrophage uptake of Staphylococcus aureus and zymosan A bioparticles.  相似文献   

11.
Selective hydrogenation of nitriles and alkynes is crucial considering the vast applications of reduced products in industries and in the synthesis of bioactive compounds. Particularly, the late 3d transition metal catalysts (manganese, iron, cobalt, nickel and copper) have shown promising activity for the hydrogenation of nitriles to primary amines, secondary amines and imines. Similarly, semihydrogenation of alkynes to E‐ and Z‐alkenes by 3d metals is adequately successful both via the transfer hydrogenation and by using molecular hydrogen. The emergence of 3d transition metals in the selective synthesis of industrially relevant amines, imines and alkenes makes this protocol more attractive. Herein, we provide a concise overview on the late 3d transition metal‐catalyzed hydrogenation of nitriles to amines and imines as well as semihydrogenation of alkynes to alkenes.  相似文献   

12.
The synthesis, characterization and catalytic activity of a new class of diruthenium hydrido carbonyl complexes bound to the t Bu PNNP expanded pincer ligand is described. Reacting t Bu PNNP with two equiv of RuHCl(PPh3)3(CO) at 140 °C produces an insoluble air-stable complex, which was structurally characterized as [Ru2(tBuPNNP)H(μ-H)Cl(μ-Cl)(CO)2] ( 1 ) using solid-state NMR, IR and X-ray absorption spectroscopies and follow-up reactivity. A reaction with KOtBu results in deprotonation of a methylene linker to produce [Ru2(tBuPNNP*)H(μ-H)(μ-OtBu)(CO)2] ( 3 ) featuring a partially dearomatized naphthyridine core. This enables metal-ligand cooperative activation of H2 analogous to the mononuclear analogue, [Ru(tBuPNP*)H(CO)]. In contrast to the mononuclear system, the bimetallic analogue 3 catalyzes the E-selective semi-hydrogenation of alkynes at ambient temperature and atmospheric H2 pressure with good functional group tolerance. Monitoring the semi-hydrogenation of diphenylacetylene by 1H NMR spectroscopy shows the intermediacy of Z-stilbene, which is subsequently isomerized to the E-isomer. Initial findings into the mode of action of this system are provided, including the spectroscopic characterization of a polyhydride intermediate and the isolation of a deactivated species with a partially hydrogenated naphthyridine backbone.  相似文献   

13.
14.
The synthesis, crystal structure studies and solvatochromic behavior of 2‐{(2E,4E)‐5‐[4‐(dimethylamino)phenyl]penta‐2,4‐dien‐1‐ylidene}malononitrile, C16H15N3 (DCV[3]), and 2‐{(2E,4E,6E)‐7‐[4‐(dimethylamino)phenyl]hepta‐2,4,6‐trien‐1‐ylidene}malononitrile, C18H17N3 (DCV[4]), are reported and discussed in comparison with their homologs having a shorter length of the π‐conjugated bridge. The compounds of this series have potential use as nonlinear materials with second‐order effects due to their donor–acceptor structures. However, DCV[3] and DCV[4] crystallized in the centrosymmetric space group P21/c which excludes their application as nonlinear optical materials in the crystalline state. They both crystallize with two independent molecules having the same molecular conformation in the asymmetric unit. The series DCV[1]–DCV[4] demonstrated reversed solvatochromic behavior in toluene, chloroform, and acetonitrile.  相似文献   

15.
Semihydrogenation of alkynes to alkenes is an important and fundamental reaction in many industrial and synthetic applications and often suffers low selectivity because of the overhydrogenation. Here, highly selective semihydrogenation of alkynes is achieved by using H2 ex situ generated from formic acid dehydrogenation with palladium (Pd)-based bimetallic catalysts through a two-chamber reactor in this work, realizing efficient utilization of H2 and selective production of alkenes under mild reaction conditions. The Pd-based bimetallic catalysts show excellent catalytic performances for semihydrogenation of alkynes (PdZn bimetallic catalyst) and dehydrogenation of formic acid (PdAg bimetallic catalyst) in the two-chamber reactor.  相似文献   

16.
Hydroalumination or hydrogallation of tri(ethynyl)silanes, RSi(C≡C‐Ar)3 ( 1a , R = Ph, Ar = Ph; 1b , R = Me, Ar = Ph; 1c , R = Me, Ar = C6H4Me), with the element hydrides H‐EtBu2 (E = Al, Ga) in stoichiometric ratios of 1:1 to 1:3 at ambient temperature yielded the addition products (PhC≡C)2(R)Si[(tBu2E)C=C(H)Ph] ( 2 , R = Ph, E = Ga; 3a , R = Me, E = Al; 3b , R = Me, E = Ga), (PhC≡C)(Me)Si[(tBu2E)C=C(H)Ph]2 ( 4a , E = Al, 4b , E = Ga) and (Me)Si[(tBu2Al)C=C(H)Ar]3 ( 5 , Ar = Ph; 6 , Ar = C6H4Me). Compounds 2 – 4 show a relatively close interaction between the coordinatively unsaturated aluminium or gallium atoms and one of the Cα(≡C) atoms of unreacted alkyne substituents [245 (E = Al) and 266 pm (E = Ga)] that stabilises the kinetically favoured cis addition products with E and hydrogen on the same side of the resulting C=C double bonds. In the absence of these stabilising effects the compounds were found to isomerise to the thermodynamically favoured trans isomers.  相似文献   

17.
A highly stereoselective alkyne semihydrogenation with copper(I) complexes is reported. Copper–N‐heterocyclic carbene complex catalysts, bearing an intramolecular Cu?O bond, allow for the direct transfer of both hydrogen atoms from dihydrogen to the alkyne. The corresponding alkenes can be isolated with high Z selectivity and negligible overreduction to the alkane.  相似文献   

18.
Peptidyl–RNA conjugates have various applications in studying the ribosome and enzymes participating in tRNA‐dependent pathways such as Fem transferases in peptidoglycan synthesis. Herein a convergent synthesis of peptidyl–RNAs based on Huisgen–Sharpless cycloaddition for the final ligation step is developed. Azides and alkynes are introduced into tRNA and UDP‐MurNAc‐pentapeptide, respectively. Synthesis of 2′‐azido RNA helix starts from 2′‐azido‐2′‐deoxyadenosine that is coupled to deoxycytidine by phosphoramidite chemistry. The resulting dinucleotide is deprotected and ligated to a 22‐nt RNA helix mimicking the acceptor arm of Ala‐tRNAAla by T4 RNA ligase. For alkyne UDP‐MurNAc‐pentapeptide, meso‐cystine is enzymatically incorporated into the peptidoglycan precursor and reduced, and L ‐Cys is converted to dehydroalanine with O‐(mesitylenesulfonyl)hydroxylamine. Reaction of but‐3‐yne‐1‐thiol with dehydroalanine affords the alkyne‐containing UDP‐MurNAc‐pentapeptide. The CuI‐catalyzed azide alkyne cycloaddition reaction in the presence of tris[(1‐hydroxypropyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]amine provided the peptidyl‐RNA conjugate, which was tested as an inhibitor of non‐ribosomal FemXWv aminoacyl transferase. The bi‐substrate analogue was found to inhibit FemXWv with an IC50 of (89±9) pM , as both moieties of the peptidyl–RNA conjugate contribute to high‐affinity binding.  相似文献   

19.
This article describes the synthesis of a new (2E,3E,6R,9E,11E)-6-isopropenyl-3,6,10-trimethyl-5,8-dioxa-4,9-diazadodeca-3,9-diene-2,11-dione dioxime (H2hmdm), and its mono-, homo, and heterodinuclear copper(II)/nickel(II) complexes. Elemental analyses, stoichiometric and spectroscopic data of the metal complexes indicated that the metal ions are coordinated to the oxime and imine nitrogen atoms (C=N). The Cu(H2hmdm), molecule coordinates to the second copper(II) ion through the oximate oxygens to afford a binuclear structure doubly bridged by the oximate groups in the cis arrangement. In the dinuclear complexes, in which the first CuII ion was complexed with nitrogen atoms of the oxime and imine groups, the second CuII ion is ligated with the 1,10-phenanthroline nitrogen atoms. Ligand and its mononuclear copper(II), homo and heterodinuclear copper(II)–nickel(II) complexes of (H2hmdm) were characterized by elemental analyses, magnetic moments, 1H-n.m.r. and 13C-n.m.r., i.r., and mass spectral studies. The data support the proposed structure of H2hmdm and its complexes.  相似文献   

20.
New estimates of Hartree–Fock limit energies (ERHF) for selected AH and AHn hydrides, diatomic and linear polyatomic molecules have been made utilizing ESCF values recently reported in the literature for HF, N2, CO, NH3, and CH4 which are very close to the respective limits. These new values have been used to investigate the applicability of Ermler and Kern's procedure for estimating ERHF: i.e., a factor f is first evaluated from data for reference molecules, where f = ERHF/ESCF, which is then used with ESCF values for other molecules to obtain their ERHF values. f has been evaluated for three groups of reference molecules? HF, H2O, NH3, CH4, N2, and CO; CH4, C2H2, C2H4, and C2H6; and C2H2, HCN, and N2? utilizing ESCF data in the literature for many Gaussian-type orbital (GTO) basis sets together with some new values calculated at the (9,5,1) to (13,8,2) levels. Trends in the variation of f within each group of reference molecules from one basis set to another, and the trends in f from one group of reference molecules to another, are discussed in detail. To minimize the influence of these effects in an ERHF estimate it is recommended that the f value should be derived from reference molecules which possess a similar combination of structural features, i.e., bonded hydrogen, single, double, or triple bonds, and the number of lone-pair electrons. Further calculations show that an f value based on data for closed-shell molecules is not applicable to open-shell species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号