首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ongoing demand for accurate self-calibrated noninvasive thermometers for micro-/nano-scale applications, particular biomedical diagnosis, is driving the development of temperature sensors. Here a new type of lanthanide metal–organic framework having near-infrared absorption and near-infrared emission features is presented, and it is based on efficient Nd3+-to-Yb3+ energy transfer in 808 nm photoexcitation. The results show that the ratiometric parameter of Nd0.5Yb0.5TPTC (TPTC= 1,1′:4′,1′′-terphenyl]-3,3′′,5,5′′-tetracarboxylic acid) can deliver good exponential-type luminescence response to temperature in the physiological regime (293–328 K) with high relative sensitivity and accurate temperature resolution, as well as good biocompatibility and chemical stability. Such lanthanide-based materials are especially useful in biomedical applications.  相似文献   

2.
In order to create near-infrared (NIR) luminescent lanthanide complexes suitable for DNA-interaction, novel lanthanide dppz complexes with general formula [Ln(NO3)3(dppz)2] (Ln = Nd3+, Er3+ and Yb3+; dppz = dipyrido[3,2-a:2′,3′-c]phenazine) were synthesized, characterized and their luminescence properties were investigated. In addition, analogous compounds with other lanthanide ions (Ln = Ce3+, Pr3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Tm3+, Lu3+) were prepared. All complexes were characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction analysis of the complexes (Ln = La3+, Ce3+, Pr3+, Nd3+, Eu3+, Er3+, Yb3+, Lu3+) showed that the lanthanide’s first coordination sphere can be described as a bicapped dodecahedron, made up of two bidentate dppz ligands and three bidentate-coordinating nitrate anions. Efficient energy transfer was observed from the dppz ligand to the lanthanide ion (Nd3+, Er3+ and Yb3+), while relatively high luminescence lifetimes were detected for these complexes. In their excitation spectra, the maximum of the strong broad band is located at around 385 nm and this wavelength was further used for excitation of the chosen complexes. In their emission spectra, the following characteristic NIR emission peaks were observed: for a) Nd3+: 4F3/24I9/2 (870.8 nm), 4F3/24I11/2 (1052.7 nm) and 4F3/24I13/2 (1334.5 nm); b) Er3+: 4I13/24I15/2 (1529.0 nm) c) Yb3+: 2F5/22F7/2 (977.6 nm). While its low triplet energy level is ideally suited for efficient sensitization of Nd3+ and Er3+, the dppz ligand is considered not favorable as a sensitizer for most of the visible emitting lanthanide ions, due to its low-lying triplet level, which is too low for the accepting levels of most visible emitting lanthanides. Furthermore, the DNA intercalation ability of the [Nd(NO3)3(dppz)2] complex with calf thymus DNA (CT-DNA) was confirmed using fluorescence spectroscopy.  相似文献   

3.
The synthesis of novel NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelating groups bearing perfluorinated appendages is described. DOTA and NOTA groups are used in the production of radiopharmaceutical agents for PET and SPECT imaging (by chelation of radioactive metal ions), as well as MRI contrast agents (by chelation of lanthanide Ln3+ ions). The novel perfluorinated variants disclosed herein will enhance the synthesis and purification of such agents, as they are compatible with fluorous purification strategies. Moreover, the perfluorous tag is anticipated to be detectable by 19F-MRI, suggesting future applications in hybrid molecular imaging such as PET–MRI.  相似文献   

4.
A series of tris(β‐diketonato)lanthanides with Yb3+, Eu3+, and Nd3+ centers were characterized as luminescent sensing probes specific to glutamic acid, aspartic acid, and their dipeptides, which are important substrates involved in nervous systems, taste receptors, and other biological systems. In particular, tris(6,6,7,7,8,8,8‐heptafluoro‐2,2‐dimethyloctane‐3,5‐dionato)ytterbium(III) exhibited a near‐infrared emission around 980 nm in response to these biological substrates. Near‐infrared‐emissive complexes have several advantages over common luminescent probes; therefore, the proposed lanthanide complexes have potential analytical applications in proteomics, metabolics, food science, astrobiology, and related technologies.  相似文献   

5.
We used a very simplified electrostatic model based on charge and polarizability of atoms and groups on an organic ligand around a lanthanide ion to predict the near‐infrared electronic circular dichroism (NIR ECD) spectra of Yb3+ (a monoelectronic ion). We tuned our method by using two widely different complexes. The first was the heterobimetallic species CsYb(hfbc)4 [hfbc=(?)‐3‐heptafluorobutyrylcamphorate], in which the ligand is a diketonate and, as such, is endowed with a chromophore with strong UV absorption (π–π*). Its oxygen atoms define a square antiprism, which provides a symmetric coordination polyhedron. The second system was Yb DOTMA [DOTMA=(1R,4R,7R,10R)‐α,α′,α′′,α′′′‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid], a chiral Yb analogue of Gd DOTA (DOTA=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid), in which the ligand lacks relevant electronic transitions and provides a dissymmetric cage. The relative weights of dynamic (ligand polarization) and static contributions to Yb NIR ECD were evaluated, and the spectra appear to have been well predicted by theory through the introduction of a heuristic weight factor. To validate the approach and to confirm the value of the weight factor, we applied it to two other compounds, namely, Na3Yb(BINOLate)3 and Yb(BINOLAM)3 [BINOLate=2,2′‐dihydroxy‐1,1′‐binaphthyl; BINOLAM=3,3′‐bis(diethylaminomethyl)‐1‐1′‐bi‐2‐naphthol].  相似文献   

6.
Recent work has shown that xenon chemical shifts in cryptophane‐cage sensors are affected when tethered chelators bind to metals. Here, we explore the xenon shifts in response to a wide range of metal ions binding to diastereomeric forms of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) linked to cryptophane‐A. The shifts induced by the binding of Ca2+, Cu2+, Ce3+, Zn2+, Cd2+, Ni2+, Co2+, Cr2+, Fe3+, and Hg2+ are distinct. In addition, the different responses of the diastereomers for the same metal ion indicate that shifts are affected by partial folding with a correlation between the expected coordination number of the metal in the DOTA complex and the chemical shift of 129Xe. These sensors may be used to detect and quantify many important metal ions, and a better understanding of the basis for the induced shifts could enhance future designs.  相似文献   

7.
A new class of lanthanide‐doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium‐enriched core–shell NaErF4:Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+‐Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700‐fold enhancement) and near‐infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red‐emitting upconversion nanoprobes for biological applications.  相似文献   

8.
A lanthanide‐complex‐based ratiometric luminescence probe specific for peroxynitrite (ONOO?), 4′‐(2,4‐dimethoxyphenyl)‐2,2′:6′,2′′‐terpyridine‐6,6′′‐diyl]bis(methylenenitrilo)tetrakis(acetate)‐Eu3+/Tb3+ ([Eu3+/Tb3+(DTTA)]), has been designed and synthesized. Both [Eu3+(DTTA)] and [Tb3+(DTTA)] are highly water soluble with large stability constants at ≈1020, and strongly luminescent with luminescence quantum yields of 10.0 and 9.9 %, respectively, and long luminescence lifetimes of 1.38 and 0.26 ms, respectively. It was found that the luminescence of [Tb3+(DTTA)] could be quenched by ONOO? rapidly and specifically in aqueous buffers, while that of [Eu3+(DTTA)] did not respond to the addition of ONOO?. Thus, by simply mixing [Eu3+(DTTA)] and [Tb3+(DTTA)] in an aqueous buffer, a ratiometric luminescence probe specific for time‐gated luminescence detection of ONOO? was obtained. The performance of [Tb3+(DTTA)] and [Eu3+/Tb3+(DTTA)] as the probes for luminescence imaging detection of ONOO? in living cells was investigated. The results demonstrated the efficacy and advantages of the new ratiometric luminescence probe for highly sensitive luminescence bioimaging application.  相似文献   

9.
Metal-based upconversion luminescence transforming high-energy photons into low-energy photons is an attractive anti-Stokes shift process for fundamental research and promising applications. In this work, we developed the upconversion luminescence in co-crystal assemblies consisting of discrete mononuclear Yb and Sm complexes. The characteristic visible emissions of Sm3+ were observed under the excitation of absorption band of Yb3+ at 980 nm. A series of co-crystal assemblies were investigated based on mononuclear Yb and Sm complexes, and the strongest luminescence was obtained when the molar concentration between Yb3+ and Sm3+ is equivalent. The crystal structure was fully characterized by the single crystal X-ray diffraction and upconverting energy transfer mechanisms were verified as cooperative sensitization upconversion and energy transfer upconversion. This is the first example of Sm3+-based upconverting luminescence in discrete lanthanide complexes which present as co-crystal assemblies at room temperature.  相似文献   

10.
Multifunctional NaGdF4:Yb3+,Er3+,Nd3+@NaGdF4:Nd3+ core–shell nanoparticles (called Gd:Yb3+,Er3+,Nd3+@Gd:Nd3+ NPs) with simultaneously enhanced near‐infrared (NIR)‐visible (Vis) and NIR‐NIR dual‐conversion (up and down) luminescence (UCL/DCL) properties were successfully synthesized. The resulting core–shell NPs simultaneously emitted enhanced UCL at 522, 540, and 660 nm and DCL at 980 and 1060 nm under the excitation of a 793 nm laser. The enhanced UCL and DCL can be explained by complex energy‐transfer processes, Nd3+→Yb3+→Er3+ and Nd3+→Yb3+, respectively. The effects of Nd3+ concentration and shell thickness on the UCL/DCL properties were systematically investigated. The UCL and DCL properties of NPs were observed under the optimal conditions: a shell Nd3+ content of 20 % and a shell thickness of approximately 5 nm. Moreover, the Gd:Yb3+,Er3+,Nd3+@Gd:20 % Nd3+ NPs exhibited remarkable magnetic resonance imaging (MRI) properties similar to that of a clinical agent, Omniscan. Thus, the core–shell NPs with excellent UCL/DCL/magnetic resonance imaging (MRI) properties have great potential for both in vitro and in vivo multimodal bioimaging.  相似文献   

11.
A systematic study of microstructure and photocatalytic properties of lanthanide doping of nanocrystalline mesoporous titanium dioxide is performed. The anatase-to-rutile (A-R) phase transformation of nanosized TiO2 was significantly inhibited by lanthanide doping and the inhibitory effect was enhanced with the increase of the rare earth radius, i.e., La3+>Gd3+>Yb3+ for different lanthanide dopants. At high calcination temperatures, different texture lanthanide titanium oxides of Ln4Ti9O24 (La3+, Pr3+, Nd3+), Ln2Ti2O7 (Eu3+, Gd3+, Tb3+, Dy3+, Er3+), and Yb2TiO5 were developed, respectively, revealing that the structures of lanthanide titanium oxide developed in Ln/TiO2 depend on the lanthanide radius. Larger radius lanthanides prefer to form higher coordination number lanthanide titanium oxide. In addition, the thermal stability of mesoporous structures of TiO2 was remarkable improved by lanthanide doping. The photocatalytic properties were studied by employing the photodegradation of Rhodamine B (RB) as a probe reaction. The results indicate that the lanthanide doping could bring about significant improvement to the photoreactivity of TiO2, and the improvement was sensitive to the atomic electronic configuration.  相似文献   

12.
Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu3+ and Tb3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu3+ is strongly dependent on the pH values in weakly acidic to neutral media (pKa = 5.8, pH 4.8–7.5), while that of HTTA–Tb3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu3+ and HTTA–Tb3+ (the HTTA–Eu3+/Tb3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb3+ emission at 540 nm to its Eu3+ emission at 610 nm, I540 nm/I610 nm, as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu3+/Tb3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A290 nm/A325 nm, as a signal. This feature enables the HTTA–Eu3+/Tb3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA–Eu3+ and HTTA–Tb3+ into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application.  相似文献   

13.
The detection and imaging of Zn2+ in biological samples are of paramount interest owing to the role of this cation in physiological functions. This is possible only with molecular probes that specifically bind to Zn2+ and result in changes in emission properties. A “turn‐on” emission or shift in the emission color upon binding to Zn2+ should be ideal for in vivo imaging. In this context, ratiometric and near‐IR probes are of particular interest. Therefore, in the area of chemosensors or molecular probes, the design of fluorophores that allow ratiometric sensing or imaging in the near‐IR region is attracting the attention of chemists. The purpose of this Focus Review is to highlight recent developments in this area and stress the importance of further research for future applications.  相似文献   

14.
Applying a single molecular probe to monitor enzymatic activities in multiple, complementary imaging modalities is highly desirable to ascertain detection and to avoid the complexity associated with the use of agents of different chemical entities. We demonstrate here the versatility of lanthanide (Ln3+) complexes with respect to their optical and magnetic properties and their potential for enzymatic detection in NIR luminescence, CEST and T1 MR imaging, controlled by the nature of the Ln3+ ion, while using a unique chelator. Based on X-ray structural, photophysical, and solution NMR investigations of a family of Ln3+ DO3A-pyridine model complexes, we could rationalize the luminescence (Eu3+, Yb3+), CEST (Yb3+) and relaxation (Gd3+) properties and their variations between carbamate and amine derivatives. This allowed the design of probes which undergo enzyme-mediated changes detectable in NIR luminescence, CEST and T1-weighted MRI, respectively governed by variations in their absorption energy, in their exchanging proton pool and in their size, thus relaxation efficacy. We demonstrate that these properties can be exploited for the visualization of β-galactosidase activity in phantom samples by different imaging modalities: NIR optical imaging, CEST and T1-weighted MRI.  相似文献   

15.
The features of fluorescent glass solar collectors are discussed. Combination of Nd3+ and Yb3+ in high refractive index glasses is suggested as concentration material. Energy absorbed by Nd3+ is transferred with high efficiency to Yb3+ emitting at 970 nm. The self-absorption of Nd3+ is eliminated and long-wavelength emission at 1.06 μm decreased as a result of energy transfer.  相似文献   

16.
This article reviews progress in the research of transition metal–lanthanide (d–f) bimetallic complexes. Through efficient energy transfer, sensitized luminescence of lanthanide ions from the visible range (EuIII) to the near-infrared region (NdIII, YbIII, ErIII and PrIII) is obtained in these bimetallic assembles. The d-block in d–f bimetallic complexes mainly contributes to the improvement of lanthanide emission efficiency and the extension of the excitation window for the lanthanide complexes. Examples are catalogued by various transition metals, such as RuII, OsII (FeII), PtII (AuI), PdII, ReI, CrIII, CoIII, ZnII and IrIII. The relevant synthetic procedures, crystal structures and photophysical properties of these d–f complexes are briefly described. Additionally, the molecular properties responsible for the performance of certain d–f systems, such as energy levels, nuclear distances and coordination environments, will be discussed.  相似文献   

17.
We report the synthesis of a cyclen‐based ligand (4,10‐bis[(1‐oxidopyridin‐2‐yl)methyl]‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid= L1 ) containing two acetate and two 2‐methylpyridine N‐oxide arms anchored on the nitrogen atoms of the cyclen platform, which has been designed for stable complexation of lanthanide(III) ions in aqueous solution. Relaxometric studies suggest that the thermodynamic stability and kinetic inertness of the GdIII complex may be sufficient for biological applications. A detailed structural study of the complexes by 1H NMR spectroscopy and DFT calculations indicates that they adopt an anti‐Δ(λλλλ) conformation in aqueous solution, that is, an anti‐square antiprismatic (anti‐SAP) isomeric form, as demonstrated by analysis of the 1H NMR paramagnetic shifts induced by YbIII. The water‐exchange rate of the GdIII complex is ${k{{298\hfill \atop {\rm ex}\hfill}}}$ =6.7×106 s?1, about a quarter of that for the mono‐oxidopyridine analogue, but still about 50 % higher than the ${k{{298\hfill \atop {\rm ex}\hfill}}}$ of GdDOTA (DOTA=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). The 2‐methylpyridine N‐oxide chromophores can be used to sensitize a wide range of LnIII ions emitting in both the visible (EuIII and TbIII) and NIR (PrIII, NdIII, HoIII, YbIII) spectral regions. The emission quantum yield determined for the YbIII complex (${Q{{{\rm L}\hfill \atop {\rm Yb}\hfill}}}$ =7.3(1)×10?3) is among the highest ever reported for complexes of this metal ion in aqueous solution. The sensitization ability of the ligand, together with the spectroscopic and relaxometric properties of its complexes, constitute a useful step forward on the way to efficient dual probes for optical imaging (OI) and MRI.  相似文献   

18.
In this study, we present the aqueous solution behavior of two luminescent lanthanide antenna complexes (Eu3+? 1 , Dy3+? 9 ) with different ligand topologies in the presence of dipicolinic acid (DPA, pyridine‐2,6‐dicarboxylic acid). Macrocyclic (1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid, DO3A, 9 ) and acyclic (1,4,7‐triazaheptane‐1,1,7,7‐tetraacetic acid, DTTA, 1 ) ligands have been selected to form a ratiometric pair in which Dy3+? 9 acts as a reference and Eu3+? 1 acts as a probe for the recognition of DPA. The pair of luminescent complexes in water reveals the capability to work as a DPA luminescent sensor. The change of emission intensity of Eu3+ indicates the occurrence of a new sensitization path for the lanthanide cation through excitation of DPA. NMR evidence implies the presence of free 1 and mass spectrometry shows the formation of emitting [EuDPA2]? as a result of a ligand exchange reaction.  相似文献   

19.
A new class of lanthanide-doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium-enriched core–shell NaErF4:Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+-Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700-fold enhancement) and near-infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red-emitting upconversion nanoprobes for biological applications.  相似文献   

20.
Cationic lanthanide complexes are generally able to spontaneously internalize into living cells. Following our previous works based on a diMe-cyclen framework, a second generation of cationic water-soluble lanthanide complexes based on a constrained cross-bridged cyclam macrocycle functionalized with donor-π-conjugated picolinate antennas was prepared with europium(III) and ytterbium(III). Their spectroscopic properties were thoroughly investigated in various solvents and rationalized with the help of DFT calculations. A significant improvement was observed in the case of the Eu3+ complex, while the Yb3+ analogue conserved photophysical properties in aqueous solvent. Two-photon (2P) microscopy imaging experiments on living T24 human cancer cells confirmed the spontaneous internalization of the probes and images with good signal-to-noise ratio were obtained in the classic NIR-to-visible configuration with the Eu3+ luminescent bioprobe and in the NIR-to-NIR with the Yb3+ one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号