首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anemia is a common clinical hematological disease with a high incidence, which seriously affects human health. Shengyu Decoction is often used in the treatment of anemia. However, the pharmacodynamic substance basis and therapeutic mechanism are still unclear, which hinders the comprehensive development and utilization of Shengyu Decoction. In this study, 143 compounds were identified in Shengyu Decoction using high-throughput ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, 24 of which were absorbed into the blood. Taking these blood-entering ingredients as the research object, we found through network pharmacology research that ferulic acid, calycosin, and astragaloside A can act on AKT1, MAPK1, and MAPK14, and play a role in treating anemia through PI3K-Akt signaling pathway and Pathways in anemia. Finally, it was demonstrated that the active compound could bind to the core target with good affinity by molecular docking. The research shows that Shengyu Decoction has multi-component, multi-target, and multi-channel effects in the treatment of anemia, which provides a basis for the development and clinical application of Shengyu Decoction.  相似文献   

2.
Qiang-Huo-Sheng-Shi decoction (QHSSD), a classic traditional Chinese herbal formula, which has been reported to be effective in rheumatoid arthritis (RA) and osteoarthritis (OA). However, the concurrent targeting mechanism of how the aforementioned formula is valid in the two distinct diseases OA and RA, which represents the homotherapy-for-heteropathy principle in traditional Chinese medicine (TCM), have not yet been clarified. In the present study, network pharmacology was adopted to analyze the potential molecular mechanism, and therapeutic effective components of QHSSD on both OA and RA. A total of 153 active ingredients in QHSSD were identified, 142 of which associated with 59 potential targets for the two diseases were identified. By constructing the protein-protein interaction network and the compound-target-disease network, 72 compounds and 10 proteins were obtained as the hub targets of QHSSD against OA and RA. The hub genes of ESR1, PTGS2, PPARG, IL1B, TNF, MMP2, IL6, CYP3A4, MAPK8, and ALB were mainly involved in osteoclast differentiation, the NF-κB and TNF signaling pathways. Moreover, molecular docking results showed that the screened active compounds had a high affinity for the hub genes. This study provides new insight into the molecular mechanisms behind how QHSSD presents homotherapy-for-heteropathy therapeutic efficacy in both OA and RA. For the first time, a two-disease model was linked with a TCM formula using network pharmacology to identify the key active components and understand the common mechanisms of its multi-pathway regulation. This study will inspire more innovative and important studies on the modern research of TCM formulas.  相似文献   

3.
Although Geng-Nian-Shu has been shown to be clinically effective in perimenopausal syndrome, its active components and mechanism have not yet been elucidated. To demonstrate the mechanism-based biomarkers of Geng-Nian-Shu in treating perimenopausal syndrome, a total of 135 chemical constituents including 52 prototype blood constituents were identified via high-performance liquid chromatography-quadrupole-time of flight/mass spectrometry. Then, network pharmacology showed significant enrichment for the PhosphoInositide-3 Kinase/Akt pathway, suggesting that it may be the main regulatory pathway for the Geng-Nian-Shu treatment of the perimenopausal syndrome. Subsequently, multivariate analysis was performed between the Geng-Nian-Shu sham-treated and Geng-Nian-Shu ovariectomy-treated groups and further screened out 18 prototype blood constituents by correlation analysis with plasma estrogen levels to identify potential biomarkers associated with Geng-Nian-Shu treat the ovariectomy-induced perimenopausal syndrome. Finally, the results of pharmacological experimental verification and Pearson correlation analysis indicated that catalpol, ligustilide, paeoniflorin, and gallic acid were selected as biomarkers of Geng-Nian-Shu which were strongly and positively correlated with PhosphoInositide-3 Kinase/Akt signaling pathway. In this study, based on high-performance liquid chromatography-quadrupole-time of flight/mass spectrometry combined with pharmacodynamics, network pharmacology, pharmacology, and other disciplines, we explored the effects and mechanisms of Geng-Nian-Shu in the treatment of perimenopausal syndrome at multiple levels. Using multiplatform technology to investigate the role of Geng-Nian-Shu represents a new strategy for the selection and verification of biomarkers of Geng-Nian-Shu and provides a basis for further development and utilization of Geng-Nian-Shu.  相似文献   

4.
In this study, the network pharmacology analysis method was used to explore the bioactive components and targets of Xianlinggubao (XLGB) and further elucidate its potential biological mechanisms of action in the treatment of osteoporosis (OP). The bioactive compounds and predictive targets of XLGB were collected from the traditional Chinese medicine systems pharmacology databases and analysis platform(TCMSP), the Encyclopeida of traditional Chinese medicine (ETCM), traditional Chinese medicine Databse@Taiwan, ChEMBL, STITCH, and SymMap database. The targets corresponding to OP were obtained by using Online Mendelian Inheritance in Man® (OMIM), GeneCards, the National Center for Biotechnology Information-Gene database. The XLGB-OP targets were obtained by intersecting with the targets of XLGB and OP. Protien-Protien interaciton (PPI) network was constructed using STRING online database and analyzed using Cytoscape 3.7.0 software to screen out hub genes. Gene ontology (GO) and KEGG enrichment analysis of the target in the PPI network was conducted using the ClusterProfiler package in R with adjusted p-value<0.05. A total of 65 XLGB bioactive compounds were screened corresponding to 776 XLGB targets and 2556 OP targets. The GO analysis and KEGG enrichment analyses suggested XLGB played a therapeutic roles in OP treatment via the interleukin-17 signaling pathway, hypoxia-inducible factor-1 signaling pathway, insulin resistance, Th-17 signaling pathway, etc. Five hub genes (AKT1, MAPK1, MAPK8, TP53, and STAT3) were screened using the degree algorithm, and molecular docking stimulation results showed that most bioactive compounds of XLGB had strong binding efficiency with hub genes. Overall, this study laid the foundation for further in vivo and in vitro experimental research and expanded the clinical applications of XLGB.  相似文献   

5.
The study aimed to establish a strategy to elucidate the in vivo constituents of Angelicae Pubescentis Radix (APR, also known as Duhuo) and reveal the probable mechanisms underlying its anti-rheumatoid arthritis activity. First recorded by Shennong Bencao Jing, APR is mainly used to treat Bi syndrome. Eleven absorbed components of APR were successfully identified using the rheumatoid arthritis (RA) rat model and the UHPLC–QTOF/MS technique. Two active ingredients (osthole and columbianadin) and five corresponding targets (PTGS1, PTGS2, RXRA, CCNA2 and ACHE) were found to construct a compound–protein interaction network in RA. In addition, a non-alcoholic fatty liver disease pathway, which was related to anti-RA activity, was eventually identified by KEGG analysis. Subsequently, molecular docking was performed by establishing a mixed matrix network, including the absorbed component, corresponding target and signaling pathway with two key compounds (osthole and columbianadin) and two important targets (PTGS2 and PTGS1). The result of molecular docking is in agreement with the network pharmacology.  相似文献   

6.
为研究紫斑罂粟壳挥发油镇咳化痰平喘的活性成分及作用机制,采用气相色谱-质谱(GC-MS)联用法分析罂粟壳挥发油成分,并结合Pubchem和Swiss Target Prediction数据库筛选活性成分靶点. 其中,在GeneCards数据库中检索镇咳、祛痰、平喘相关的靶点,利用在线Venn取交集基因,Cytoscap 3.7.1软件构建成分-靶点-疾病网络图筛选关键成分,String数据库构建蛋白互作网络筛选核心作用靶点,DAVID数据库进行GO功能和KEGG通路富集分析. 结果表明,GC-MS鉴别出紫斑罂粟壳挥发油中28个化学成分,虚拟筛选获得20个活性成分对应的259个靶点. 网络药理学预测紫斑罂粟壳挥发油通过肿瘤坏死因子(TNF)、磷酸化蛋白激酶(AKT1)、SRC蛋白激酶(SRC)、表皮生长因子受体(EGFR)和丝裂原活化蛋白激酶 1(MAPK1)等关键靶点,进而协同调控肿瘤通路,神经配体-受体相互作用、PI3K-Akt信号通路等多条信号通路发挥镇咳祛痰、平喘的治疗作用. 研究为后续试验研究罂粟壳挥发油的药效物质及作用机制提供参考.  相似文献   

7.
Platycodi Radix (PR) is a valuable herb that is widely used in the treatment of chronic obstructive pulmonary disease in clinics. However, the mechanism of action for the treatment of chronic obstructive pulmonary disease remains unclear due to the lack of in vivo studies. Our study established a novel integrated strategy based on ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry, network pharmacology, and molecular docking to systematically analyze the tissue distribution and active compounds of PR in vivo and the therapeutic mechanism of chronic obstructive pulmonary disease. First, tissue distribution studies have shown that the lung is the organ with the highest distribution of PR compounds. Subsequently, network pharmacology results showed that the tumor necrosis factor signaling pathway, interleukin-17 signaling pathway, and mitogen-activated protein kinase signaling pathway were the critical mechanisms of PR against chronic obstructive pulmonary disease. Ultimately, molecular docking results showed that the key targets were stably bound to the corresponding active compounds of PR. Our study is of great significance for the screening of the key effective compounds and the study of the mechanism of action in traditional Chinese medicine and provides data to support the further development and utilization of PR.  相似文献   

8.
Lung cancer shows the highest incidence rate in the world. Thus, it has become increasingly important to find therapeutic drugs to treat lung cancer. Farfarae Flos (FF) has been used in traditional Chinese medicine to treat pulmonary diseases such as cough, bronchitis and asthmatic disorders. In this study, the anti-proliferation effects of petroleum extracts of FF (PEFF) on Lewis lung cancer cells and the corresponding mechanisms were studied using cell metabolomics. Fifteen differential metabolites in the cell extracts and the corresponding medium related to the anti-proliferation effect of PEFF were identified, which were probably involved in pyruvate metabolism and glycine, serine and threonine metabolism. For the cellular uptake compounds in PEFF, six metabolites derived from two prototype compounds were also tentatively identified by UHPLC-Q-Orbitrap high-resolution MS. Network pharmacology analysis demonstrated that the anti-proliferation mechanism of PEFF was also probably related to the target genes, including, Aurora-A, glutathione S-transferase Mu 1 (GSTM1), glutathione S-transferase P 1 (GSTP1), progesterone receptor and heme oxygenase-1 (HO-1), and further associated with the proteoglycans and PI3K/Akt signaling pathway. Cell metabolomics and network pharmacology analysis provided a holistic method to investigate the anti-proliferation mechanisms of PEFF. However, further studies were still needed to validate the potential target genes, pathways and active compounds in PEFF.  相似文献   

9.
BackgroundIn this study, the network pharmacological methods were used to predict the target of effective components of compounds in Zisheng Shenqi Decoction (ZSD, or Nourishing Kidney Qi Decoction) in the treatment of gouty arthritis (GA).MethodThe main effective components and corresponding key targets of herbs in the ZSD were discerned through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis (TCMSP), Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine (BATMAN-TCM) database. UniProt database and Swiss Target Prediction (STP) database was used to rectify and unify the target names and supply the target information. The targets related to GA were obtained by using GeneCards database. After we discovered the potential common targets between ZSD and GA, the interaction network diagram of “ZSD-component-GA-target” was constructed by Cytoscape software (Version 3.7.1). Subsequently, the Protein-protein interaction (PPI) network of ZSD effective components-targets and GA-related targets was constructed by Search Tool for the Retrieval of Interacting Genes Database (STRING). Bioconductor package “org.Hs.eg.db” and “cluster profiler” package were installed in R software (Version 3.6.0) which used for Gene Ontology analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis.Results146 components and 613 targets of 11 herbal medicines in the ZSD were got from TCMSP database and BATMAN-TCM database. 987 targets of GA were obtained from GeneCards database. After intersected and removed duplications, 132 common targets between ZSD and GA were screened out by Cytoscape software (Version 3.7.1). These common targets derived from 81 effective components of 146 components, such as quercetin, stigmasterol and kaempferol. They were closely related to anti-inflammatory, analgesic and anti oxidative stress and the principal targets comprised of Purinergic receptor P2X, ligand-gated ion channel 7 (P2x7R), Nod-like receptor protein 3 (NLRP3) and IL-1β. GO enrichment analysis and KEGG pathway enrichment analysis by R software (Version 3.6.0) showed that the key target genes had close relationship with oxidative stress, reactive oxygen species (ROS) metabolic process and leukocyte migration in aspects of biological process, cell components and molecular function. It also indicated that ZSD could decrease inflammatory reaction, alleviate ROS accumulation and attenuate pain by regulating P2 × 7R and NOD like receptor signaling pathway of inflammatory reaction.ConclusionA total of 81 effective components and 132 common target genes between ZSD and GA were screened by network pharmacology. The PPI network, GO enrichment analysis and KEGG pathway enrichment analysis suggested that ZSD can exerte anti-inflammatory and analgesic effects on the treatment of GA by reducing decreasing inflammatory reaction, alleviating ROS accumulation, and attenuating pain. The possible molecular mechanism of it mainly involved multiple components, multiple targets and multiple signaling pathways, which provided a comprehensive understanding for further study. In general, the network pharmacological method applied in this study provides an alternative strategy for the mechanism of ZSD in the treatment of GA.  相似文献   

10.
Based on the serum pharmacochemistry technique and high‐performance liquid chromatography/diode‐array detection (HPLC/DAD) coupled with electrospray tandem mass spectrometry (HPLC/ESI‐MS/MS), a method for screening and analysis of the multiple absorbed bioactive components and metabolites of Jitai tablets (JTT) in orally dosed rat plasma was developed. Plasma was treated by methanol precipitation prior to liquid chromatography, and the separation was carried out on a Symmetry C18 column, with a linear gradient (0.1% formic acid/water/acetonitrile). Mass spectra were acquired in negative and positive ion modes, respectively. As a result, 26 bioactive components originated from JTT and 5 metabolites were tentatively identified in orally dosed rat plasma by comparing their retention times and MS spectra with those of authentic standards and literature data. It is concluded that an effective and reliable analytical method was set up for screening the bioactive components of Chinese herbal medicine, which provided a meaningful basis for further pharmacology and active mechanism research of JTT. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Acanthopanax Senticosus Harms. has been used widely in traditional Chinese medicine for the treatment of chronic bronchitis, neurasthenia, hypertension and ischemic heart disease. However, the in vivo constituents of the stem of Acanthopanax Senticosus remain unknown. In this paper, ultra high performance liquid chromatography with electrospray ionization quadrupole time‐of‐flight mass spectrometry and the MarkerLynxTM software combined with multiple data processing approach were used to study the constituents in vitro and in vivo. The aqueous extract from the Acanthopanax Senticosus stem and the compositions in rat serum after intragastric administration were completely analyzed. Consequently, 115 compounds in the aqueous extract from Acanthopanax Senticosus stem and 41 compounds absorbed into blood were characterized. Of the 115 compounds in vitro, 54 were reported for first time, including sinapyl alcohol, sinapyl alcohol diglucoside, and 1‐O‐sinapoyl‐β‐d ‐glucose. In the 41 compounds in vivo, 7 were prototype components and 34 were metabolites which were from 21 components of aqueous extract from Acanthopanax Senticosus stem, and the metabolic pathways of the metabolites were elucidated for first time. The results narrowed the range of screening the active components and provided a basis for the study of action mechanism and pharmacology.  相似文献   

12.
The current study aimed to explore the anti-type 2 diabetes mellitus (T2DM) mechanism of guava leaf based on network pharmacology. The compounds contained in guava leaf was summarized from the literature, and a series of databases was used to identify the active components and corresponding potential targets. The intersection between diabetes-associated genes searched in the GeneCard database and the predicted targets of guava leaf active components was defined as target genes, which were then used to construct a “compound-active components-target genes” pharmacological network. The biological functions and pathway enrichment analyses of target genes were performed in KOBAS 3.0. The differential expression analysis of GSE76894 was performed to obtain the differential expressed genes (DEGs) in T2DM patients by comparing non-diabetic controls. Finally, the intersection between DEGs and target genes were named key genes, and the representative pathways in which these genes were involved were drawn through KEGG Mapper. We found that the active components of guava leaf may regulate the PI3K-AKT signaling pathway, T2DM regulation process, and insulin resistance pathway, which was evidenced by KEGG pathway analysis of key genes. These results implied that guava leaf has a potential anti-T2DM property and its mode of action may be exerted via regulating insulin secretion and reducing blood sugar level.  相似文献   

13.
Although the chemical components of Panax notoginseng (PN) and Panax ginseng (PG) are similar, their bioactivities are different. In this study, the differential bioactivities of PN and PG were used as the research object. First, the different metabolites in the plasma after oral administration of PN and PG were analyzed using a UPLC-Q/TOF-MS-based metabolomics approach. Afterward, the metabolite-target- pathway network of PN and PG was constructed, and thus the pathways related to different bioactivities were analyzed. As a result, 7 different metabolites were identified in PN group, and 10 different metabolites were identified in the PG group. In the PN group, the metabolite N1 was related to hemostasis, N1 and N3 were related to inhibiting the nerve center, antihypertensive, and abirritation. The metabolites N1, N3, N4, N5, and N6 were related to liver protection. The results showed that the metabolites G1, G2, G3, G5, and G6 in PG group were related to heart protection, and G1, G2, G6, and G9 were related to increased blood pressure. There were 13 signaling pathways related to different biological activities of PN (8 pathways) and PG (5 pathways). These pathways further clarified the mechanism of action that caused the different bioactivities between PN and PG. In summary, metabolomics combined with network pharmacology could be helpful to clarify the material basis of different bioactivities between PN and PG, promoting the research on PN and PG.  相似文献   

14.
Ipomoea pes-caprae (L.) R. Br (Convolvulaceae) is a commonly used marine traditional Chinese medicine in the southern coastal areas of China. It has been widely used to treat rheumatoid arthritis, but its effective substances and anti-rheumatoid arthritis mechanism remain ambiguous. Hence, in this study, the chemical profile and absorbed ingredients of Ipomoea pes-caprae were elucidated by ultra-performance liquid chromatography-mass spectrometry. Moreover, targeted network pharmacology was used to clarify the mechanism of action of Ipomoea pes-caprae in treating rheumatoid arthritis. Finally, 23 compounds were identified in the aqueous extracts of Ipomoea pes-caprae and 12 absorbed ingredients were detected in rats' plasma. These 12 absorbed ingredients might be the essential effective substances of Ipomoea pes-caprae. The tissue distributions of 3 absorbed ingredients in rats were successfully analyzed. The targeted network pharmacological analysis results indicated that the regulation of inflammatory reaction, immune response, cell proliferation, and apoptosis were the critical mechanism of Ipomoea pes-caprae against rheumatoid arthritis. This study successfully clarified the effective substances and potential mechanisms of Ipomoea pes-caprae in treating rheumatoid arthritis. The results of this research could provide a valuable reference for further scientific research and clinical application.  相似文献   

15.
16.
《Arabian Journal of Chemistry》2020,13(11):7773-7797
Guava is known for its hypoglycemic, antivirus, antibacterial, anti-inflammatory, antioxidant, and antitumor properties. In this study, triterpenoids, sesquiterpenes, and flavonoids were examined as potential targets of constituents of guava leaves. Our study was aimed to reveal the antitumor mechanism and construct the network pharmacology network of guava leaf constituents and lung cancer. The potential targets of guava leaf constituents were searched in target databases, while the disease genes were searched in the GeneCards database. The common targets of drugs and diseases were screened out. A network map was constructed by the Cytoscape software, and the GO and KEGG pathways were analyzed. The existing cases were studied by SystemsDock molecular docking and cBioPortal tumor database study. Among the 66 chemical constituents of guava leaves, 153 of their targets were the lung cancer genes involved in many signaling pathways, such as the PI3K-Akt signaling pathway, in small cell lung cancer and non-small cell lung cancer. There was a binding activity between ligand compounds and receptor proteins. Guava leaves inhibited tumor through a gene regulatory network, and may play an important role in gene-targeting therapy. Through network pharmacology, we found that guava leaves had potential targets that interacted with various tumors, regulating the signaling pathways of cancers. This study preliminarily verified the pharmacological basis and the mechanism of the antitumor effect of guava leaves, providing a foundation for further research.  相似文献   

17.
In recent years, direct and indirect evidence has been found of the efficacy of the traditional Chinese medicine Bergenia purpurascens in treating arthritis and osteoarthritis. Several major components, such as bergenin and 11‐O‐galloylbergenin, have good anti‐inflammatory activity. Since research on the chemical components of Bergenia purpurascens and related mechanisms for the treatment of osteoarthritis has never been performed, this study aimed to analyze the chemical components of Bergenia purpurascens through ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry technology and the UNIFI screening platform to predict the underlying mechanisms in treating osteoarthritis by analyzing the network pharmacology. In total, 43 chemical constituents were identified, mainly flavonoids (18), phenolic glycosides (13), and organic acids (7). Among them, 16 components were found in Bergenia purpurascens for the first time. Through the analysis of network pharmacology, several potential candidate targets and pathways were initially predicted, including AKT1, MAPK1, and MAPK3, as well as the apoptosis, estrogen, and MAPK signaling pathways. Bergenin, 11‐O‐galloylbergenin, arbutin, catechin‐3‐O‐gallate, and other components play a synergistic role in treating osteoarthritis. This study analyzed the chemical components of Bergenia purpurascens and preliminarily revealed potential mechanisms of treating osteoarthritis, providing a basis for further evaluating the drug's efficacy.  相似文献   

18.
A high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass tandem mass spectrometry method was established to characterize the chemical constituents of Kangxianling granule (KXL), a traditional Chinese medicine formula, and the metabolic profile in rat urine and plasma after oral administration of KXL. A total of 27 compounds in KXL extract and 13 prototype compounds with 12 metabolites in rat urine and plasma were identified. Among the 27 detected compounds, 15 were identified by comparing the retention time and MS data with that of reference compounds and the other 12 compounds were tentatively assigned based on the MS data and reference literature. The main prototype components absorbed in rat were amygdalin, salvianolic acid B, tanshinones and anthraquinones. Hydroxylation, glucuronidation and sulfation were the principal metabolic pathways in rat. The results revealed that the 25 compounds identified in rat urine and plasma were the potential active ingredients of KXL, which provides helpful chemical information for further study of the pharmacology mechanism of KXL. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
An efficient method has been developed for the synthesis of 7′-arylspiro{adamantane-[2,3′]-(1′,2′,4′,5′,7′-tetraoxazocanes)} by the ring transformation reaction of spiro{adamantane-[2,3’]-(1′,2′,4′,5′,7′-pentaoxacane)} with arylamines in the presence of Sm(NO3)3·6H2O as the catalyst. NMR signals of the synthesized compounds were assigned considering the conformation dynamics of the tetraoxazocane ring with two rigid peroxide bonds. The structures of some of the compounds were studied by X-ray diffraction. The thermal stability of single crystal was determined by DSC method. Compounds 7′-(2-methylphenyl)spiro{adamantane-[2,3′]-(1′,2′,4′,5′,7′-tetraoxazocane)} and 7′-(4-fluorophenyl)spiro{adamantane-[2,3′]-(1′,2′,4′,5′,7′-tetraoxazocane)} exhibited cytotoxicity towards cancer cells.  相似文献   

20.
A valid method using liquid chromatography coupled with electrospray ionization (ESI) and ion trap mass spectrometry was established for the study of the absorbed components in rat plasma after oral administration of a traditional Chinese medicine (TCM) Shexiang Baoxin pill. The plasma was deproteinated by adding methanol prior to liquid chromatography, in which separation was carried out on a Symmetry C18 column (5 µm, 250 × 4.6 mm). A linear gradient with 0.5% formic acid–water–acetonitrile was used as mobile phase. Mass spectra were acquired in both negative and positive modes. Twenty‐one components including 17 components from Shexiang Baoxin pill and four metabolites were observed from a comprehensive analysis of the chromatography of Shexiang Baoxin pill, controlled plasma and dosed plasma. All of the 17 prototype compounds and three of the metabolites were identified by comparing their retention behaviors and MS and MS/MS spectra with reference compounds and literature data. This study developed an integrated method for screening the bioactive constituents in plasma after oral adminstration of Chinese herbal medicine and provided helpful chemical information for further pharmacology and active mechanism research on TCM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号