首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABX3-type halide perovskite nanocrystals (NCs) have been a hot topic recently due to their fascinating optoelectronic properties. It has been demonstrated that A-site ions have an impact on their photophysical and chemical properties, such as the optical band gap and chemical stability. The pursuit of halide perovskite materials with diverse A-site species would deepen the understanding of the structure–property relationship of the perovskite family. In this work we have attempted to synthesize rubidium-based perovskite NCs. We have discovered that the partial substitution of Rb+ by Cs+ help to stabilize the orthorhombic RbPbBr3 NCs at low temperature, which otherwise can only be obtained at high temperature. The inclusion of Cs+ into the RbPbBr3 lattice results in highly photoluminescent Rb1−xCsxPbBr3 NCs. With increasing amounts of Cs+, the band gaps of the Rb1−xCsxPbBr3 NCs decrease, leading to a redshift of the photoluminescence peak. Also, the Rb1−xCsxPbBr3 NCs (x=0.4) show good stability under ambient conditions. This work demonstrates the high structural flexibility and tunability of halide perovskite materials through an A-site cation substitution strategy and sheds light on the optimization of perovskite materials for application in high-performance optoelectronic devices.  相似文献   

2.
Lead‐free perovskite nanocrystals (NCs) were obtained mainly by substituting a Pb2+ cation with a divalent cation or substituting three Pb2+ cations with two trivalent cations. The substitution of two Pb2+ cations with one monovalent Ag+ and one trivalent Bi3+ cations was used to synthesize Cs2AgBiX6 (X=Cl, Br, I) double perovskite NCs. Using femtosecond transient absorption spectroscopy, the charge carrier relaxation mechanism was elucidated in the double perovskite NCs. The Cs2AgBiBr6 NCs exhibit ultrafast hot‐carrier cooling (<1 ps), which competes with the carrier trapping processes (mainly originate from the surface defects). Notably, the photoluminescence can be increased by 100 times with surfactant (oleic acid) added to passivate the defects in Cs2AgBiCl6 NCs. These results suggest that the double perovskite NCs could be potential materials for optoelectronic applications by better controlling the surface defects.  相似文献   

3.
The structure of the trigonal modification of Cs3Sb2I9was refined by XRD methods (Syntex {ie572-1} diffractometer, λMoKα at T = 285 K. The structure is ofperovskite type A3B3-xX9 with ordered vacancies in the B-sublattice. The unit cell with pseudo-R-centering has the following parameters: α = 8.435(7), c = 10.390(7) Å, V = 757.5 Å3, Z = 1; dx = 4.67 g/cm3. The centrosymmetric space group {ie572-2} was chosen based on the laser radiation second harmonic generation test. The parameters of the pseudo-rhombohedron corresponding to the perovskite cell are a’ = 5.976 å, α = 89.78°. The R-lattice of a perovskite structure is disturbed by ordered Sb vacancies in one of the three I6, octahedra. The structural modifications of the compounds A3B2X9 are analyzed in terms of Dornberger-Schiffs OD theory as the members of the family formed by the two-dimensional periodic fragments ofperovskite type structures.  相似文献   

4.
Bi3+ and lanthanide ions have been codoped in metal oxides as optical sensitizers and emitters. But such codoping is not known in typical semiconductors such as Si, GaAs, and CdSe. Metal halide perovskite with coordination number 6 provides an opportunity to codope Bi3+ and lanthanide ions. Codoping of Bi3+ and Ln3+ (Ln=Er and Yb) in Cs2AgInCl6 double perovskite is presented. Bi3+-Er3+ codoped Cs2AgInCl6 shows Er3+ f-electron emission at 1540 nm (suitable for low-loss optical communication). Bi3+ codoping decreases the excitation (absorption) energy, such that the samples can be excited with ca. 370 nm light. At that excitation, Bi3+-Er3+ codoped Cs2AgInCl6 shows ca. 45 times higher emission intensity compared to the Er3+ doped Cs2AgInCl6. Similar results are also observed in Bi3+-Yb3+ codoped sample emitting at 994 nm. A combination of temperature-dependent (5.7 K to 423 K) photoluminescence and calculations is used to understand the optical sensitization and emission processes.  相似文献   

5.
The double perovskite family, A2MIMIIIX6, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH3NH3PbI3. Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs2AgBiBr6 as host, band-gap engineering through alloying of InIII/SbIII has been demonstrated in the current work. Cs2Ag(Bi1−xMx)Br6 (M=In, Sb) accommodates up to 75 % InIII with increased band gap, and up to 37.5 % SbIII with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs2Ag(Bi0.625Sb0.375)Br6. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed.  相似文献   

6.
Lead‐based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices. However, two critical problems are still unresolved and hindering their commercial applications: one is the fact of being lead‐based and the other is the poor stability. Lead‐free all‐inorganic perovskite Cs3Bi2X9 (X=Cl, Br, I) NCs are synthesized with emission wavelength ranging from 400 to 560 nm synthesized by a facile room temperature reaction. The ligand‐free Cs3Bi2Br9 NCs exhibit blue emission with photoluminescence quantum efficiency (PLQE) about 0.2 %. The PLQE can be increased to 4.5 % when extra surfactant (oleic acid) is added during the synthesis processes. This improvement stems from passivation of the fast trapping process (2–20 ps). Notably, the trap states can also be passivated under humid conditions, and the NCs exhibited high stability towards air exposure exceeding 30 days.  相似文献   

7.
Lead‐based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices. However, two critical problems are still unresolved and hindering their commercial applications: one is the fact of being lead‐based and the other is the poor stability. Lead‐free all‐inorganic perovskite Cs3Bi2X9 (X=Cl, Br, I) NCs are synthesized with emission wavelength ranging from 400 to 560 nm synthesized by a facile room temperature reaction. The ligand‐free Cs3Bi2Br9 NCs exhibit blue emission with photoluminescence quantum efficiency (PLQE) about 0.2 %. The PLQE can be increased to 4.5 % when extra surfactant (oleic acid) is added during the synthesis processes. This improvement stems from passivation of the fast trapping process (2–20 ps). Notably, the trap states can also be passivated under humid conditions, and the NCs exhibited high stability towards air exposure exceeding 30 days.  相似文献   

8.
The double perovskite family, A2MIMIIIX6, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH3NH3PbI3. Given the generally large indirect band gap within most known double perovskites, band‐gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs2AgBiBr6 as host, band‐gap engineering through alloying of InIII/SbIII has been demonstrated in the current work. Cs2Ag(Bi1−x Mx )Br6 (M=In, Sb) accommodates up to 75 % InIII with increased band gap, and up to 37.5 % SbIII with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs2Ag(Bi0.625Sb0.375)Br6. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three‐metal systems are also assessed.  相似文献   

9.
The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare‐earth ions doping and intrinsic emission of lead‐free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first‐principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D47F6‐3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi‐doped Cs2Ag(In1?xTbx)Cl6 NCs could be continuously tuned from green to orange, through the efficient energy‐transfer channel from self‐trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead‐free perovskite NCs and to expand their luminescence applications.  相似文献   

10.
Bi3+ and lanthanide ions have been codoped in metal oxides as optical sensitizers and emitters. But such codoping is not known in typical semiconductors such as Si, GaAs, and CdSe. Metal halide perovskite with coordination number 6 provides an opportunity to codope Bi3+ and lanthanide ions. Codoping of Bi3+ and Ln3+ (Ln=Er and Yb) in Cs2AgInCl6 double perovskite is presented. Bi3+‐Er3+ codoped Cs2AgInCl6 shows Er3+ f‐electron emission at 1540 nm (suitable for low‐loss optical communication). Bi3+ codoping decreases the excitation (absorption) energy, such that the samples can be excited with ca. 370 nm light. At that excitation, Bi3+‐Er3+ codoped Cs2AgInCl6 shows ca. 45 times higher emission intensity compared to the Er3+ doped Cs2AgInCl6. Similar results are also observed in Bi3+‐Yb3+ codoped sample emitting at 994 nm. A combination of temperature‐dependent (5.7 K to 423 K) photoluminescence and calculations is used to understand the optical sensitization and emission processes.  相似文献   

11.
Two‐dimensional (2D) lead‐free halide perovskites have generated enormous perception in the field of optoelectronics due to their fascinating optical properties. However, an in‐depth understanding on their shape‐controlled charge‐carrier recombination dynamics is still lacking, which could be resolved by exploring the photoluminescence (PL) blinking behaviour at the single‐particle level. Herein, we demonstrate, for the first time, the synthesis of nanocrystals (NCs) and 2D nanosheets (NSs) of layered mixed halide, Cs3Bi2I6Cl3, by solution‐based method. We applied fluorescence microscopy and super‐resolution optical imaging at single‐particle level to investigate their morphology‐dependent PL properties. Narrow emission line widths and passivation of non‐radiative defects were evidenced for 2D layered nanostructures, whereas the activation of shallow trap states was recognized at 77 K. Interestingly, individual NCs were found to display temporal intermittency (blinking) in PL emission. On the other hand, NS showed temporal PL intensity fluctuations within localized domains of the crystal. In addition, super‐resolution optical image of the NS from localization‐based method showed spatial inhomogeneity of the PL intensity within perovskite crystal.  相似文献   

12.
Herein we report the colloidal synthesis of Cs3Sb2I9 and Rb3Sb2I9 perovskite nanocrystals, and explore their potential for optoelectronic applications. Different morphologies, such as nanoplatelets and nanorods of Cs3Sb2I9, and spherical Rb3Sb2I9 nanocrystals were prepared. All these samples show band‐edge emissions in the yellow–red region. Exciton many‐body interactions studied by femtosecond transient absorption spectroscopy of Cs3Sb2I9 nanorods reveals characteristic second‐derivative‐type spectral features, suggesting red‐shifted excitons by as much as 79 meV. A high absorption cross‐section of ca. 10−15 cm2 was estimated. The results suggest that colloidal Cs3Sb2I9 and Rb3Sb2I9 nanocrystals are potential candidates for optical and optoelectronic applications in the visible region, though a better control of defect chemistry is required for efficient applications.  相似文献   

13.
Two-dimensional (2D) lead-free halide perovskites have generated enormous perception in the field of optoelectronics due to their fascinating optical properties. However, an in-depth understanding on their shape-controlled charge-carrier recombination dynamics is still lacking, which could be resolved by exploring the photoluminescence (PL) blinking behaviour at the single-particle level. Herein, we demonstrate, for the first time, the synthesis of nanocrystals (NCs) and 2D nanosheets (NSs) of layered mixed halide, Cs3Bi2I6Cl3, by solution-based method. We applied fluorescence microscopy and super-resolution optical imaging at single-particle level to investigate their morphology-dependent PL properties. Narrow emission line widths and passivation of non-radiative defects were evidenced for 2D layered nanostructures, whereas the activation of shallow trap states was recognized at 77 K. Interestingly, individual NCs were found to display temporal intermittency (blinking) in PL emission. On the other hand, NS showed temporal PL intensity fluctuations within localized domains of the crystal. In addition, super-resolution optical image of the NS from localization-based method showed spatial inhomogeneity of the PL intensity within perovskite crystal.  相似文献   

14.
Recently, enormous efforts have been made to develop the efficient, lead (Pb) free and stable perovskite solar cells (PSCs). In this regards, various strategies were applied and the optoelectronic properties of various Pb free perovskites such as (CH3NH3)3Sb2I9, (CH3NH3)3Bi2I9, Cs3Sb2I9, Cs3Bi2I9, CH3NH3SnI3 and CH3NH3GeI3 etc have been investigated. However, the photovoltaic performance of the developed PSCs was still low and presence of organic moieties in common hole‐transport materials (HTMs) shows poor stability against moisture and heat. Herein, we have investigated the optoelectronic properties of all inorganic Pb free perovskites (Cs3Sb2I9=1 and Cs3Bi2I9=2) and employed novel strategies (dissolution‐recrystallization) to prepare the efficient Pb free PSCs. The band gaps of the 1 and 2 were found to be 2.2 eV and 2.0 eV, respectively. The developed PSCs with 1 and 2 exhibited the power conversion efficiency of 0.68% and 1.087%, respectively.  相似文献   

15.
Cesium Chromium Halides Cs3CrCl6, Cs3Cr2Cl9, and Cs3CrBr6 – Preparation, Properties, Crystal Structure The crystal structures of Cs3CrCl6 and Cs3Cr2Cl9 were determined and redetermined by X‐ray single‐crystal studies (space group Pnnm, Z = 6, a = 1115.6(2) pm, b = 2291.3(5) pm, c = 743.8(1) pm, Rf = 7.73%, 1025 unique reflections with I > 2σ(I) (Cs3CrCl6); P63/mmc, Z = 2, a = 721.7(2) pm und c = 1791.0(1) pm; Rf = 2.06%, 395 unique reflections with I > 2.5σ(I) (Cs3Cr2Cl9). The structure of Cs3CrCl6 consists of two different isolated CrCl6 octahedra and five crystallographic different Cs+ ions. The CrCl6 octahedra form ropes in the direction [001]. Because of orientational disordering of the Cr(1)Cl6 octahedra and the an only half‐occupation of some cesium and chlorine sites Cs3CrCl6 is strongly disordered in direction of the (020) plane. The ionic conductivity of Cs3CrCl6, which was expected owing to the great disorder, however, is with 7.3 × 10–5 Ω–1 cm–1 at 740 K relatively small. The compound Cs3CrBr6, which was firstly prepared by quenching stoichiometric amounts of CsBr and CrBr3 from 833 K, is metastable at ambient temperature. It is probably isostructural to Cs3CrCl6 as shown by X‐ray powder photographs.  相似文献   

16.
A series of lead‐free double perovskite nanocrystals (NCs) Cs2AgSb1?yBiyX6 (X: Br, Cl; 0≤y≤1) is synthesized. In particular, the Cs2AgSbBr6 NCs is a new double perovskite material that has not been reported for the bulk form. Mixed Ag–Sb/Bi NCs exhibit enhanced stability in colloidal solution compared to Ag–Bi or Ag–Sb NCs. Femtosecond transient absorption studies indicate the presence of two prominent fast trapping processes in the charge‐carrier relaxation. The two fast trapping processes are dominated by intrinsic self‐trapping (ca. 1–2 ps) arising from giant exciton–phonon coupling and surface‐defect trapping (ca. 50–100 ps). Slow hot‐carrier relaxation is observed at high pump fluence, and the possible mechanisms for the slow hot‐carrier relaxation are also discussed.  相似文献   

17.
A series of lead‐free double perovskite nanocrystals (NCs) Cs2AgSb1?yBiyX6 (X: Br, Cl; 0≤y≤1) is synthesized. In particular, the Cs2AgSbBr6 NCs is a new double perovskite material that has not been reported for the bulk form. Mixed Ag–Sb/Bi NCs exhibit enhanced stability in colloidal solution compared to Ag–Bi or Ag–Sb NCs. Femtosecond transient absorption studies indicate the presence of two prominent fast trapping processes in the charge‐carrier relaxation. The two fast trapping processes are dominated by intrinsic self‐trapping (ca. 1–2 ps) arising from giant exciton–phonon coupling and surface‐defect trapping (ca. 50–100 ps). Slow hot‐carrier relaxation is observed at high pump fluence, and the possible mechanisms for the slow hot‐carrier relaxation are also discussed.  相似文献   

18.
In the past few years, Pb-free metal halide perovskites have been recognized as a promising material for various optoelectronic applications because of some of their unique features, such as direct and tunable bandgap, visible light emission, narrow emission spectra, lower toxicity level, and easy solution processability. Recently, several Bi-based perovskite-like single crystals (SCs) and nanocrystals (NCs) were reported, which are mostly suffering from their poor structural stability and lower emission intensity. Here, we report the growth of millimeter-sized formamidinium bismuth bromide (FA3Bi2Br9) perovskite SCs via slow solvent evaporation method. They crystallized into a trigonal crystal structure and exhibit an indirect bandgap of 2.71 eV. These results are supported by the first-principle density-functional theory studies. We have also synthesized nanometer-sized spherical blue-emitting FA3Bi2Br9 NCs by solvent ligand-assisted reprecipitation method and achieved a maximum photoluminescence quantum yield of 22%. We observe that the addition of excess ligands into the FA3Bi2Br9 NCs solution before the purification step significantly improves the optical and colloidal stability of the NCs.  相似文献   

19.
Thermally activated delayed fluorescence (TADF) is generally observed in solid-state organic molecules or metal-organic complexes. However, TADF in all-inorganic colloidal nanocrystals (NCs) is rare. Herein, we report the first colloidal synthesis of an air-stable all-inorganic lead-free Cs2ZrCl6 perovskite NCs. The Cs2ZrCl6 NCs exhibit long-lived triplet excited state (138.2 μs), and feature high photoluminescence (PL) quantum efficiency (QY=60.37 %) due to TADF mechanism. The emission color can be easily tuned from blue to green by synthesizing the mixed-halide Cs2ZrBrxCl6−x (0≤x≤1.5) NCs. Femtosecond transient absorption and temperature dependent PL measurements are performed to clarify the emission mechanism. In addition, Bi3+ ions are successfully doped into Cs2ZrCl6 NCs, which further extends the PL properties. This work not only develops a new lead-free halide perovskite NCs for potential optoelectronic applications, but also offers unique strategies for developing new inorganic phosphors.  相似文献   

20.
The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare-earth ions doping and intrinsic emission of lead-free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first-principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D47F6-3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi-doped Cs2Ag(In1−xTbx)Cl6 NCs could be continuously tuned from green to orange, through the efficient energy-transfer channel from self-trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead-free perovskite NCs and to expand their luminescence applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号