首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Syntheses and Structure of Chiral Metallatetrahedron Complexes of the Type [Re2(M1PPh3)(M2PPh3)(μ‐PCy2)(CO)7C≡CPh] (M1 = Ag, Au; M2 = Cu, Ag, Au) From the reaction of Li[Re2(μ‐H)(μ‐PCy2)(CO)7(C(Ph)O)] ( 1 ) with Ph3AuC≡CPh both benzaldehyde and the trinuclear complex Li[Re2(AuPPh3)(μ‐PCy2)(CO)7C≡CPh] ( 2a ) were obtained in high yield. The complex anion was isolated as its PPh4‐salt 2b . The latter reacts with coinage metal complexes PPh3M2Cl [M2 = Cu, Ag, Au] to give chiral heterometallatetrahedranes of the general formula [Re2(AuPPh3)(M2PPh3)(μ‐PCy2)(CO)7C≡CPh] (M2 = Cu 3a , Ag 3b , Au 3c ). The corresponding complex [Re2(AgPPh3)2(μ‐PCy2)(CO)7C≡CPh] ( 3d ) is obtained from the reaction of [Re2(AgPPh3)2(μ‐PCy2)(CO)7Cl] ( 4 ) with LiC≡CPh. 3d undergoes a metathesis reaction in the presence of PPh3CuCl giving [Re2(AgPPh3)(CuPPh3)(μ‐PCy2)(CO)7C≡CPh] ( 3e ) and PPh3AgCl. Analogous metathesis reactions are observed when 3c is reacted with PPh3AgCl or PPh3CuCl giving 3a or 3b , respectively. The reaction of 1 with PPh3AuCl gives benzaldehyde and Li[Re2(AuPPh3)(μ‐PCy2)(CO)7Cl] ( 5a ) which upon reaction with PhLi forms the trinuclear complex Li[Re2(AuPPh3)(μ‐PCy2)(CO)7Ph] ( 6a ). Again this complex was isolated as its PPh4‐salt 6b . In contrast to 2b , 6b reacts with one equivalent of Ph3PAuCl by transmetalation to give Ph3PAuPh and PPh4[Re2(AuPPh3)(μ‐PCy2)(CO)7Cl] ( 5b ). The X‐ray structures of the compounds 3a , 3b , 3e and 4 are reported.  相似文献   

2.
Synthesis and Structure of the Nitrido Complexes (PPh4)2[(O3Os≡N)2 MCl2] (M = Pd und Pt) and [{(Me2PhP)3Cl2Re≡N}2PdCl2] The threenuclear complexes (PPh4)2[(O3Os≡N)2MCl2] (M = Pd ( 1a ) and Pt ( 1b )) are obtained by the reaction of (PPh4) [OsO3N] with [MCl2(NCC6H5)2] (M = Pd and Pt) in form of orange red ( 1a ) or red brown ( 1b ) crystals. The compounds crystallize isotypically in the monoclinic space group P21/n with a = 1052.35(6), b = 1376.70(6), c = 1607.3(1) pm, β = 94.669(7)°, and Z = 2 for 1a and a = 1053.27(7), b = 1371.6(1), c = 1615.9(1) pm, β = 94.557(7)°, and Z = 2 for 1b . In the centrosymmetric complex anions [(O3O≡N)2MCl2]2— a linear MCl2 moiety is connected in trans arrangement with two complexes [O3Os≡N] via asymmetric nitrido bridges Os≡N‐M. For the M2+ cations such results a square‐planar coordination MCl2N2. The virtually linear nitrido bridges are characterized by distances Os‐N = 167.5 pm ( 1a ) and 164.2 pm ( 1b ) as well as Pd‐N = 196.2 pm and Pt‐N = 197.8 pm. The reaction of ReNCl2(PMe2Ph)3 with PdCl2(NCC6H5)2 in CH2Cl2 yields red crystals of the heterometallic complex [{(Me2PhP)3Cl2Re≡N}2PdCl2] ( 2 ). It crystallizes as 2 · 2 CH2Cl2 in the monoclinic space group C2/c with a = 2138.3(5); b = 1260.9(3); c = 2375.6(2) pm; β = 96.09(1)° and Z = 4. In the threenuclear complex [{(Me2PhP)3Cl2Re≡N}2PdCl2] with the symmetry Ci the coordination of the Pd2+ cation of the central PdCl2 unit is completed by two nitrido bridges Re≡N‐Pd to complexes (Me2PhP)3Cl2Re≡N forming a square‐planar arrangement. The distances in the linear nitrido bridges are Re‐N = 170.2 pm and Pd‐N = 197.1 pm.  相似文献   

3.
Divalent bis(phosphinimino)methanide lanthanide complexes of composition [{(Me3SiNPPh2)2CH}EuI(THF)]2 and [{(Me3SiNPPh2)2CH}YbI(THF)2] have been prepared by a salt metathesis reactions of K{CH(PPh2NSiMe3)2} and LnI2. Further reactions of these complexes with [K(THF)nN(PPh2)2] led selectively to the heteroleptic amido complexes [{(Me3SiNPPh2)2CH}Ln{(Ph2P)2N}(THF)] (Ln = Eu, Yb). The ytterbium complex can also be obtained by reduction of [{CH(PPh2NSiMe3)2}Yb{(Ph2P)2N}Cl] with elemental potassium. The single crystals of [{(Me3SiNPPh2)2CH}Ln{(Ph2P)2N}(THF)] contain enantiomerically pure complexes. As a result of the similar ionic radii of the divalent lanthanides and the heavier alkaline earth metals some similarities in coordination chemistry of the bis(phosphinimino)methanide ligand were anticipated. Therefore, MI2 (M = Ca, Sr, Ba) was reacted with K{CH(PPh2NSiMe3)2} to give [{(Me3SiNPPh2)2CH}CaI(THF)2], [{(Me3SiNPPh2)2CH}SrI(THF)]2, and [{(Me3SiNPPh2)2CH}BaI(THF)2]2, respectively. As expected the Sr and Eu complexes and the Ca and Yb complexes are very similar, whereas for the Ba compound, as a result of the large ion radius, a different coordination sphere is observed. For all new complexes the solid-state structures were established by single crystal X-ray diffraction. In the solid-state the {CH(PPh2NSiMe3)2} ligand acts as tridentate donor forming a long methanide carbon metal bond. Thus, all complexes presented can be considered as organometallic compounds. [{(Me3SiNPPh2)2CH}YbI(THF)2] was also used as precatalyst for the intramolecular hydroamination/cyclization reaction of different aminoalkynes and aminoolefines. Good yields but moderate activities were observed.  相似文献   

4.
A series of ruthenium alkenylacetylide complexes trans-[Ru{C≡CC(=CH2)R}Cl(dppe)2] (R=Ph ( 1 a ), cC4H3S ( 1 b ), 4-MeS-C6H4 ( 1 c ), 3,3-dimethyl-2,3-dihydrobenzo[b]thiophene (DMBT) ( 1 d )) or trans-[Ru{C≡C-cC6H9}Cl(dppe)2] ( 1 e ) were allowed to react with the corresponding propargylic alcohol HC≡CC(Me)R(OH) (R=Ph ( A ), cC4H3S ( B ), 4-MeS-C6H4 ( C ), DMBT ( D ) or HC≡C-cC6H10(OH) ( E ) in the presence of TlBF4 and DBU to presumably give alkenylacetylide/allenylidene intermediates trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dppe)2]PF6 ([ 2 ]PF6). These complexes were not isolated but deprotonated to give the isolable bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dppe)2] (R=Ph ( 3 a ), cC4H3S ( 3 b ), 4-MeS-C6H4 ( 3 c ), DMBT ( 3 d )) and trans-[Ru{C≡C-cC6H9}2(dppe)2] ( 3 e ). Analogous reactions of trans-[Ru(CH3)2(dmpe)2], featuring the more electron-donating 1,2-bis(dimethylphosphino)ethane (dmpe) ancillary ligands, with the propargylic alcohols A or C and NH4PF6 in methanol allowed isolation of the intermediate mixed alkenylacetylide/allenylidene complexes trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dmpe)2]PF6 (R=Ph ([ 4 a ]PF6), 4-MeS-C6H4 ([ 4 c ]PF6). Deprotonation of [ 4 a ]PF6 or [ 4 c ]PF6 gave the symmetric bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dmpe)2] (R=Ph ( 5 a ), 4-MeS-C6H4 ( 5 c )), the first of their kind containing the dmpe ancillary ligand sphere. Attempts to isolate bis(allenylidene) complexes [Ru{C=C=C(Me)R}2(PP)2]2+ (PP=dppe, dmpe) from treatment of the bis(alkenylacetylide) species 3 or 5 with HBF4 ⋅ Et2O were ultimately unsuccessful.  相似文献   

5.
6-Aminocoumarin reacts with pyridine-2-carboxaldehyde and has synthesized N-[(2-pyridyl)methyliden]-6-coumarin (L). The ligand, L, reacts with [Cu(MeCN)4]ClO4/AgNO3 to synthesize Cu(I) and Ag(I) complexes of formulae, [Cu(L)2]ClO4 and [Ag(L)2]NO3, respectively. While similar reaction in the presence of PPh3 has isolated [Cu(L)(PPh3)2]ClO4 and [Ag(L)(PPh3)2]NO3. All these compounds are characterized by FTIR, UV-Vis and 1H NMR spectroscopic data. In case of [Cu(L)(PPh3)2]ClO4 and [Ag(L)(PPh3)2]NO3, the structures have been confirmed by X-ray crystallography. The structure of the complexes are distorted tetrahedral in which L coordinates in a N,N′ bidentate fashion and other two coordination sites are occupied by PPh3. The ligand and the complexes are fluorescent and the fluorescence quantum yields of [Cu(L)(PPh3)2]ClO4 and [Ag(L)(PPh3)2]NO3 are higher than [Cu(L)2]ClO4 and [Ag(L)2]NO3. Cu(I) complexes show Cu(II)/Cu(I) quasireversible redox couple while Ag(I) complexes exhibit deposition of Ag(0) on the electrode surface during cyclic voltammetric experiments. gaussian 03 computations of representative complexes have been used to determine the composition and energy of molecular levels. An attempt has been made to explain solution spectra and redox properties of the complexes.  相似文献   

6.
Syntheses of the copper and gold complexes [Cu{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] containing the homoleptic carbonyl cations [M{Fe(CO)5}2]+ (M=Cu, Au) are reported. Structural data of the rare, trimetallic Cu2Fe, Ag2Fe and Au2Fe complexes [Cu{Fe(CO)5}2][SbF6], [Ag{Fe(CO)5}2][SbF6] and [Au{Fe(CO)5}2][HOB{3,5-(CF3)2C6H3}3] are also given. The silver and gold cations [M{Fe(CO)5}2]+ (M=Ag, Au) possess a nearly linear Fe-M-Fe’ moiety but the Fe-Cu-Fe’ in [Cu{Fe(CO)5}2][SbF6] exhibits a significant bending angle of 147° due to the strong interaction with the [SbF6] anion. The Fe(CO)5 ligands adopt a distorted square-pyramidal geometry in the cations [M{Fe(CO)5}2]+, with the basal CO groups inclined towards M. The geometry optimization with DFT methods of the cations [M{Fe(CO)5}2]+ (M=Cu, Ag, Au) gives equilibrium structures with linear Fe-M-Fe’ fragments and D2 symmetry for the copper and silver cations and D4d symmetry for the gold cation. There is nearly free rotation of the Fe(CO)5 ligands around the Fe-M-Fe’ axis. The calculated bond dissociation energies for the loss of both Fe(CO)5 ligands from the cations [M{Fe(CO)5}2]+ show the order M=Au (De=137.2 kcal mol−1)>Cu (De=109.0 kcal mol−1)>Ag (De=92.4 kcal mol−1). The QTAIM analysis shows bond paths and bond critical points for the M−Fe linkage but not between M and the CO ligands. The EDA-NOCV calculations suggest that the [Fe(CO)5]→M+←[Fe(CO)5] donation is significantly stronger than the [Fe(CO)5]←M+→[Fe(CO)5] backdonation. Inspection of the pairwise orbital interactions identifies four contributions for the charge donation of the Fe(CO)5 ligands into the vacant (n)s and (n)p AOs of M+ and five components for the backdonation from the occupied (n-1)d AOs of M+ into vacant ligand orbitals.  相似文献   

7.
0IntroductionTheincreasingcommercialvalueoftransitionmetalcomplexesofxanthateshasarousedconsiderableinterestingintheirchemistry.Whiletheiranalyticalapplicationsarewellknown犤1犦,theyarenowfindingextensiveuseinvulcanizationofrubber,frothfloatationprocessforconcentrationofsulphideores,asantioxi-dants,lubricants犤2,3犦,andhavebeenfoundtopossessfungicidalandinsecticidalactivity犤4犦.Inrecentyears,therehasbeengrowinginterestinthestudyofd10metalcomplexes,whichexhibitrichphotophysicalandpho-tochemica…  相似文献   

8.
Oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) react with phenylacetylene under formation of complexes with ylide‐type ligands. Compounds of the compositions [ReOCl3(PPh3){C(Ph)C(H)(PPh3)}] ( 1 ), [ReOBr3(OPPh3){C(Ph)C(H)(PPh3)}] ( 2 ), and [ReOBr3(OPPh3){C(H)C(Ph)(PPh3)}] ( 3 ) were isolated and characterized by X‐ray diffraction. They contain a ligand, which was formed by a nucleophilic attack of released PPh3 at coordinated phenylacetylene. The structures of the products show that there is no preferable position for this attack. Cleavage of the Re–C bond in 3 and dimerization of the organic ligand resulted in the formation of the [{(PPh3)(H)CC(Ph)}2]2+ cation, which crystallized as its [(ReOBr4)(OReO3)]2– salt.  相似文献   

9.
Treatment of bis(cyanamide) [M(N≡CNEt2)2L4](BPh4)2 and bis(cyanoguanidine) [M{N≡CN(H)C(NH2)=NH}2L4](BPh4)2 complexes [M = Fe, Ru, Os; L = P(OEt)3] with an excess of amine RNH2 (R = nPr, iPr) affords mixed‐ligand complexes with cyanamide and amine [M(NH2R)(N≡CNEt2)L4](BPh4)2 ( 1a – 5a ) and [M(NH2R){N≡CN(H)C(NH2)=NH}L4](BPh4)2 ( 1b , 2b ). The complexes were characterized by spectroscopy and X‐ray crystal structure determination of [M(NH2iPr)(N≡CNEt2){P(OEt)3}4](BPh4)2 [M = Ru ( 3a ), Os ( 5a )].  相似文献   

10.
Ligand Behaviour of P‐functional Organotin Halides: Nickel(II), Palladium(II), and Platinum(II) Complexes with Me2(Cl)SnCH2CH2PPh2 Me2(Cl)SnCH2CH2PPh2 ( 1 ) reacts with NiII, PdII, and PtII halides in molar ratio 2 : 1 forming the complexes [MX2{PPh2CH2CH2Sn(Cl)Me2}2] (M = Ni, Pd, Pt; X = Cl, Br) ( 3 – 6 , 9 , 10 ) ( 7 , 8 : M = Ni; Br instead of Cl). The nickel complexes were isolated and characterized both as the planar ( 3 , 5 , 7 ) and the tetrahedral ( 4 , 6 , 8 ) isomer. Crystal structure analyses and NMR data indicate for the planar nickel complexes 3 , 5 , 7 and [MCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 : M = Pd; 10 : M = Pt) the existence of intra and intermolecular M–Hal…Sn bridges. In a ligand : metal molar ratio of 3 : 1 the complexes [MéCl{PPh2CH2CH2SnCl2Me2}{PPh2CH2CH2Sn(Cl)Me2}2] ( 11 : M = Pd; 12 : M = Pt) are formed which represent intramolecular ion pairs. By dehalogenation of [PdCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 ) with sodium amalgam and graphite potassium (C8K), respectively, the palladacycles cis‐[Pd{PPh2CH2CH2SnMe2}2] ( 13 ) and trans‐[Pd(Cl)PPh2CH2CH2SnMe2{PPh2CH2CH2Sn(Cl)Me2}] ( 14 ) are formed. From the compounds 1 , 3 , 9 , 11 , and 12 the crystal structures are determined. All compounds are characterized by 1H, 31P, and 119Sn NMR spectroscopy.  相似文献   

11.
The betain‐like compound S2CC(PPh3)2 ( 1 ), which is obtained from CS2 and the double ylide C(PPh3)2, reacts with [Co2(CO)8] and [Mn2(CO)10] in THF to afford the salt‐like complexes [Co{S2CC(PPh3)2}3][Co(CO)4]3 ( 2 ) and [(CO)4Mn{S2CC(PPh3)2}][Mn(CO)5] ( 3 ), respectively, in good yields. At both d6 cations 1 acts as a chelating ligand. Disproportionation reactions from formal Co0 into CoIII and Co?I and from Mn0 into MnI and Mn?I occurred with the removal of four or one carbonyl groups, respectively. The crystal structures of 2· 5.5THF and 3· 2THF are reported, which show a shortening of the C–C bond in the ligand upon complex formation. The compounds are further characterized by 31P NMR and IR spectroscopy.  相似文献   

12.
Eight platinum acetylide complexes have been synthesized and characterized. The catalytic properties of these complexes in curing silicone rubber by hydrosilylation have been tested. Among the complexes tested, trans‐Pt(PPh3)2[―C≡CC(CH3)2OSi(CH3)3] 2 (2), trans‐Pt(PPh3)2[―C≡CC(CH3)2OSi(CH2CH3)3]2 (3), trans‐Pt(PPh3)2[―C≡CC(CH3)2OSiPh(CH3)2]2 (4), trans‐Pt(PPh3)2[―C≡C(C6H10)OSi(CH3)3]2 (6), trans‐Pt(PPh3)2[―C≡C(C6H10)OSi(CH2CH3)3]2 (7), and trans‐Pt(PPh3)2[―C≡C(C6H10)OSiPh(CH3)2]2 (8) exhibited sufficiently long pot‐lives (15 days) at room temperature and short silicone rubber curing times of 10–35 min at 100°C or 1–5 min at 120°C. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Herein are described some continuing investigations into the reactions of cyano‐alkenes with diynyl‐ruthenium complexes which have resulted in the preparation and characterisation of diynyl‐ruthenium compounds Ru(C≡CC≡CR)(PP)Cp [R = Ph, PP = dppe; R = Fc, PP = dppf; R = CPh=CBr2, PP = (PPh3)2], together with the polycyanobutadienyls Ru{C≡CC[=C(CN)2]CR=CR′(CN)}(PP)Cp′ [R = Fc, (PP)Cp′ = (dppf)Cp; R = H, SiMe3, (PP)Cp′ = (dppe)Cp*] formed by [2 + 2]‐cycloaddition of the cyano‐alkenes to the outer C≡C triple bonds and subsequent ring‐opening reactions. Single‐crystal XRD molecular structure determinations of six complexes are reported.  相似文献   

14.
Copper(I) alkynyl complexes have attracted tremendous attention in structural studies, as luminescent materials, and in catalysis, and homoleptic complexes have been reported to form polymers or large clusters. Herein, six unprecedented structures of CuI alkynyl complexes and a procedure to measure the cone angles of alkynyl ligands based on the crystal structures of these complexes are reported. An increase of the alkynyl cone angle in the complexes leads to a modulation of the structures from polymeric [((PhC≡CC≡C)Cu)2(NH3)], to a large cluster [(TripC≡CC≡C)Cu]20(MeCN)4, to a relatively small cluster [(TripC≡C)Cu]8 (Trip=2,4,6‐iPr3‐C6H2). The complexes exhibit yellow‐to‐red phosphorescence at ambient temperature in the solid state and the luminescence behavior of the Cu20 cluster is sensitive to acetonitrile.  相似文献   

15.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Li XL  Tan M  Zhang KJ  Yang B  Chen J  Ai YB 《Inorganic chemistry》2012,51(1):109-118
Reaction of (AuC≡CbpyC≡CAu)(n) (HC≡CbpyC≡CH = 5,5'-diethynyl-2,2'-bipyridine) with diphosphine ligands Ph(2)P(CH(2))(n)PPh(2) (n = 1 dppm, 3 dppp, 5 dpppen, 6 dpph), 1,1'-bis(diphenylphosphino)ferrocene (dppf), and 1,2-bis(diphenylphosphino)benzene (bdpp) in CH(2)Cl(2) afforded the corresponding dual luminescent gold(I) complexes [(AuC≡CbpyC≡CAu)(2)(μ-dppm)(2)] (1), [(AuC≡CbpyC≡CAu)(2)(μ-dppp)(2)] (2), [(AuC≡CbpyC≡CAu)(2)(μ-dpppen)(2)] (3), [(AuC≡CbpyC≡CAu)(2)(μ-dpph)(2)] (4), [(AuC≡CbpyC≡CAu)(2)(μ-dppf)(2)] (5), and [(AuC≡CbpyC≡CAu)(2)(μ-bdpp)(2)] (6). The solid structures of complexes 1 and 2 are confirmed to be tetranuclear macrocyclic rings by single crystal structure analysis, and those of complexes 3-6 are proposed to be similar to those of complexes 1 and 2 in structure because their good solubility in CH(2)Cl(2), their HRMS results, and the P···P separations of 20.405-20.697 ? in the same linear rigid P-Au-C≡CbpyC≡C-Au-P unit are all favorable to form such 2:4:2 macrocycles. Each of the absorption spectral titrations between complexes 1-6 and Yb(hfac)(3)(H(2)O)(2) (Hhfac = hexafluoroacetylacetone) gives a 2:1 ratio between the Yb(hfac)(3) unit and the complex 1-6 moieties. The energy transfer occurs efficiently from the gold(I) alkynyl antennas 1-6 to Yb(III) centers with the donor ability in the order of 1 ~ 2 ~ 3 ~ 4 > 6 > 5.  相似文献   

17.
The systematic analysis of the luminescence of a series of alkynyl gold derivatives with general formulas [(diphos)(AuC≡Cpy)(2)] (diphosphane =2,2'-bis(diphenylphosphanyl)propane or dppip (1), bis(diphenylphosphanyl)acetylene or dppa (2), 1,2-bis(diphenylphosphanyl)ethane or dppe (3) and 1,4-bis(diphenylphosphanyl)butane or dppb, (4), has shown a straightforward correlation between the Au(I)···Au(I) distance and the emission quantum yields and decaytimes. The analysis of the decaytimes, quantum yields and thus, the corresponding calculated rate constants demonstrated the existence of a correlation between Au(I)···Au(I) distance and the radiative rate constant for the deactivation of the emissive triplet states. It was concluded that the increased emission of these compounds results from the increase in spin-orbit coupling that favors the spin forbidden transition to the singlet ground state.  相似文献   

18.
A study of the coordination chemistry of different bis(diphenylphosphino)methanide ligands [Ph2PC(X)PPh2] (X=H, SiMe3) with Group 4 metallocenes is presented. The paramagnetic complexes [Cp2Ti{κ2P,P‐Ph2PC(X)PPh2}] (X=H ( 3 a ), X=SiMe3 ( 3 b )) have been prepared by the reactions of [(Cp2TiCl)2] with [Li{C(X)PPh2}2(thf)3]. Complex 3 b could also be synthesized by reaction of the known titanocene alkyne complex [Cp2Ti(η2‐Me3SiC2SiMe3)] with Ph2PC(H)(SiMe3)PPh2 ( 2 b ). The heterometallacyclic complex [Cp2Zr(H){κ2P,P‐Ph2PC(H)PPh2}] ( 4 aH ) has been prepared by reaction of the Schwartz reagent with [Li{C(H)PPh2}2(thf)3]. Reactions of [Cp2HfCl2] with [Li{C(X)PPh2}2(thf)3] gave the highly strained corresponding metallacycles [Cp2M(Cl){κ2P,P‐Ph2PC(X)PPh2}] ( 5 aCl and 5 bCl ) in very good yields. Complexes 3 a , 4 aH , and 5 aCl have been characterized by X‐ray crystallography. Complex 3 a has also been characterized by EPR spectroscopy. The structure and bonding of the complexes has been investigated by DFT analysis. Reactions of complexes 4 aH , 5 aCl , and 5 bCl did not give the corresponding more unsaturated heterometallacyclobuta‐2,3‐dienes.  相似文献   

19.
Synthesis and Spectroscopic Characterization of Copper(II) and Nickel(II) Tricyanomethanide Complexes with Imidazoles – Crystal Structure of [Cu{C(CN)3}2(2-meiz)2] The copper(II) and nickel(II) tricyanomethanide complexes with imidazoles of the type [Cu{C(CN)3}2L4], [L = 2- or 4-methylimidazole (meiz)] and [M{C(CN)3}2L2] [M = Cu, L = imidazole (iz), 2- or 4-meiz; M = Ni, L = iz, 2- or 4-meiz] were prepared and characterized by electronic, infrared, and – some of them – by ESR spectroscopy. The structure [Cu{C(CN)3}2(2-meiz)2], solved by X-ray crystallographic analysis, shows a two-dimensional network with unsymmetric C(CN)3-bridges between the CuII atoms. Polymeric structures with bridging C(CN)3-groups were identified by means of spectroscopic methods also for the other [M{C(CN)3}2L2] complexes. On the other hand, for the complexes [M{C(CN)3}2L4] follow molecular structures, in which monodentate C(CN)3 ligands are present. All compounds under investigation show a tetragonal-bipyramidal geometry with various degree of tetragonal distortion.  相似文献   

20.
Complexes containing a Co3 cluster linked to SiMe3, Au(PPh3), W(CO)3Cp and Fc groups by a C5 chain have been prepared by elimination of AuBr(PR3) (R=Ph, tol) in the reactions between Co33-CBr)(μ-dppm)(CO)7 and {(R3P)Au}CCCCX [X=SiMe3, W(CO)3Cp] or {(OC)7(μ-dppm)Co3}CCC{Au(PPh3)} and FcCCI (X=Fc). Subsequent auro-desilylation of the SiMe3 compound affords {(OC)7(μ-dppm)Co3}CCCCC{Au[P(tol)3]}. Single-crystal X-ray structures of the W(CO)3Cp, Au{P(tol)3} and Fc complexes are reported. The C5 chain shows little departure from a formal CCCCC fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号