首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A helping hand: Incorporation of Group?2 Lewis acids into a macrocycle appended to a phosphine ligand attached to a rhenium carbonyl complex promotes otherwise unfavorable transformations of coordinated CO (see scheme; M=Ca, Sr). These Lewis acids form relatively weak M?O bonds, thereby enabling release of organic products from the metal center.  相似文献   

2.
Catalytic asymmetric aminative dearomatization of 1‐substituted 2‐naphthols was successfully implemented with electrophilic azodicarboxylates under the catalysis of chiral ScIII/pybox complexes. This intermolecular reaction represents a hitherto unknown enantioselective C? N bond‐forming process through direct dearomatization of phenolic compounds to generate chiral nitrogen‐containing quaternary carbon stereocenters.  相似文献   

3.
A highly efficient catalytic asymmetric dearomatization of naphthols by means of an electrophilic amination reaction catalyzed by chiral phosphoric acid is presented. This protocol provides a facile access to functionalized β‐naphthalenone compounds with a chiral quaternary carbon center in excellent yields and enantioselectivity (up to 99 % yield, up to 96 % ee).  相似文献   

4.
The asymmetric addition of trimethylsilyl cyanide to aldehydes can be catalysed by Lewis acids and/or Lewis bases, which activate the aldehyde and trimethylsilyl cyanide, respectively. It is not always apparent from the structure of the catalyst whether Lewis acid or Lewis base catalysis predominates. To investigate this in the context of using salen complexes of titanium, vanadium and aluminium as catalysts, a Hammett analysis of asymmetric cyanohydrin synthesis was undertaken. When Lewis acid catalysis is dominant, a significantly positive reaction constant is observed, whereas reactions dominated by Lewis base catalysis give much smaller reaction constants. [{Ti(salen)O}2] was found to show the highest degree of Lewis acid catalysis, whereas two [VO(salen)X] (X=EtOSO3 or NCS) complexes both displayed lower degrees of Lewis acid catalysis. In the case of reactions catalysed by [{Al(salen)}2O] and triphenylphosphine oxide, a non‐linear Hammett plot was observed, which is indicative of a change in mechanism with increasing Lewis base catalysis as the carbonyl compound becomes more electron‐deficient. These results suggested that the aluminium complex/triphenylphosphine oxide catalyst system should also catalyse the asymmetric addition of trimethylsilyl cyanide to ketones and this was found to be the case.  相似文献   

5.
Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity.  相似文献   

6.
Direct Mannich‐type reactions that afford both α‐ and β‐amino esters by the reaction of a broad range of carbonyl compounds and aldimines are disclosed. The transformation is promoted by a sterically frustrated Lewis acid/Brønsted base pair, which is proposed to operate cooperatively: Within the catalyst complex, an enolate is generated that then reacts with a hydrogen‐bond‐activated imine. Noncovalent interactions between reactants and the catalyst provide selectivity and new opportunities for future catalyst design.  相似文献   

7.
Salts containing new cyanido(fluorido)phosphate anions of the general formula [PF6?n(CN)n]? (n=1–4) were synthesized by a very mild Lewis‐acid‐catalyzed synthetic protocol and fully characterized. All [PF6?n(CN)n]? (n=1–4) salts could be isolated on a preparative scale. It was also possible to detect the [PF(CN)5]? but not the [P(CN)6]? anion. The best results with respect to purity, yield, and low cost were obtained when the F?/CN? substitution reactions were carried out in ionic liquids.  相似文献   

8.
The first Pd0‐catalyzed intermolecular arylative dearomatization of β‐naphthols with aryl halides is described. It was found that Q‐Phos could facilitate the palladium‐catalyzed cross‐coupling‐type dearomatization of β‐naphthols, while avoiding O‐arylation, to construct 2‐naphthalenones in excellent yields and with high chemoselectivity.  相似文献   

9.
The first copper‐catalyzed intermolecular dearomatization of indoles by an asymmetric propargylic substitution reaction was developed. This method provides a highly efficient synthesis of versatile furoindoline and pyrroloindoline derivatives containing a quaternary carbon stereogenic center and a terminal alkyne moiety with up to 86 % yield and 98 % ee.  相似文献   

10.
Molecular compounds featuring nitrogen atoms are typically regarded as Lewis bases and are extensively employed as donor ligands in coordination chemistry or as nucleophiles in organic chemistry. By contrast, electrophilic nitrogen‐containing compounds are much rarer. Nitrenium cations are a new family of nitrogen‐based Lewis acids, the reactivity of which remains largely unexplored. In this work, nitrenium ions are explored as catalysts in five organic transformations. These reactions are the first examples of Lewis acid catalysis employing nitrogen as the site of substrate activation. Moreover, these compounds are readily accessed from commercially available reagents and exhibit remarkable stability toward moisture, allowing for benchtop transformations without the need to pretreat solvents.  相似文献   

11.
12.
13.
14.
An Ir‐catalyzed intermolecular asymmetric dearomatization reaction of β‐naphthols with allyl alcohols or allyl ethers was developed. When an iridium catalyst generated from [Ir(COD)Cl]2 (COD=cyclooctadiene) and a chiral P/olefin ligand is employed, highly functionalized β‐naphthalenone compounds bearing an all‐carbon‐substituted quaternary chiral center were obtained in up to 92 % yield and 98 % ee . The direct utilization of allyl alcohols as electrophiles represents an improvement from the viewpoint of atom economy. Allyl ethers were found to undergo asymmetric allylic substitution reaction under Ir catalysis for the first time. The diverse transformations of the dearomatized product to various motifs render this method attractive.  相似文献   

15.
Lewis acid‐catalyzed reactions of 2‐substituted cyclopropane 1,1‐dicarboxylates with 2‐naphthols is reported. The reaction exhibits tunable selectivity depending on the nature of Lewis acid employed and proceed as a dearomatization/rearomatization sequence. With Bi(OTf)3 as the Lewis acid, a highly selective dehydrative [3+2] cyclopentannulation takes place leading to the formation of naphthalene‐fused cyclopentanes. Interestingly, engaging Sc(OTf)3 as the Lewis acid, a Friedel–Crafts‐type addition of 2‐naphthols to cyclopropanes takes place, thus affording functionalized 2‐naphthols. Both reactions furnished the target products in high regioselectivity and moderate to high yields.  相似文献   

16.
17.
Ease of generation , stablity in solution at ambient temperature, high enantioselectivity in Diels–Alder reactions, efficient catalyst recovery, and large rate differences on variation of the anion are all characteristics of the new Ru Lewis acid [CpRu((S,S)-biphop-F)]+ (biphop-F=(C6F5)2POCH2(Ph)CH2(Ph)OP(C6F5)2). The structure of complex 1 (L=methacrolein, Y=SbF6) provides evidence for a cooperative binding of the dienophile by both the Lewis acid and the anion.  相似文献   

18.
Reactions of some typical acid halides of carbonic and trithiocarbonic acids and of orthophosphoric and sulfuric acids with Lewis acids and Lewis bases are compared. Acylium, perfluoroacylium, thioacylium, and even sulfonylium ions are obtainable with Lewis acids. It is possible by conductivity measurements and by electronic and above all IR spectroscopic investigations to determine whether the 1:1 adducts of acid halides and Lewis compounds are acylium or sulfonylium salts or donor-acceptor complexes. In the reaction with Lewis bases, the halogen atom in the acid halide is replaced by the electron donor, generally with formation of nonpolar molecular compounds or complexes.  相似文献   

19.
As a new type of bifunctional catalyst, the Lewis acid transition-metal (LA-TM) catalysts have been widely applied for hydrogen activation. This study presents a mechanistic framework to understand the LA-TM-catalyzed H2 activation through DFT studies. The mer(trans)-homolytic cleavage, the fac(cis)-homolytic cleavage, the synergetic heterolytic cleavage, and the dissociative heterolytic cleavage should be taken as general mechanisms for the field of LA-TM catalysis. Four typical LA-TM catalysts, the Z-type κ4-L3B-Rh complex tri(azaindolyl)borane-Rh, the X-type κ3-L2B-Co complex bis-phosphino-boryl (PBP)-Co, the η2-BC-type κ3-L2B-Pd complex diphosphine-borane (DPB)-Pd, and the Z-type κ2-LB-Pt complex (boryl)iminomethane (BIM)-Pt are selected as representative models to systematically illustrate their mechanistic features and explore the influencing factors on mechanistic variations. Our results indicate that the tri(azaindolyl)borane-Rh catalyst favors the synergetic heterolytic mechanism; the PBP-Co catalyst prefers the mer(trans)-homolytic mechanism; the DPB-Pd catalyst operates through the fac(cis)-homolytic mechanism, whereas the BIM-Pt catalyst tends to undergo the dissociative heterolytic mechanism. The mechanistic variations are determined by the coordination geometry, the LA-TM bonding nature, the electronic structure of the TM center, and the flexibility or steric effect of the LA ligands. The presented mechanistic framework should provide helpful guidelines for LA-TM catalyst design and reaction developments.  相似文献   

20.
According to present knowledge, the Ni‐catalyzed hydrocyanation of styrene leads predominantly to the branched product 2‐phenylpropionitrile (98 %). We observed a dramatic inversion of the regioselectivity upon addition of a Lewis acid. Up to 83 % of the linear product 3‐phenylpropionitrile was obtained by applying phosphite ligands in the presence of AlCl3. The mechanism of the Ni‐catalyzed reaction and the influence of additional Lewis acids have been investigated by means of deuterium labeling experiments, NMR studies, and DFT calculations. Furthermore, the behavior of different Lewis acids, such as CuCN, could be rationalized and predicted by DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号